Open Access iconOpen Access



Enhanced Nature Inspired-Support Vector Machine for Glaucoma Detection

Jahanzaib Latif1, Shanshan Tu1,*, Chuangbai Xiao1, Anas Bilal2, Sadaqat Ur Rehman3, Zohaib Ahmad4

1 Engineering Research Center of Intelligent Perception and Autonomous Control, Faculty of Information Technology, Beijing University of Technology, 100124, Beijing, China
2 College of Information Science Technology, Hainan Normal University, Hainan Province, Haikou, 571158, China
3 Department of Computer Science, University of Salford, Manchester, UK
4 Faculty of Information Technology Beijing University of Technology Chaoyang District, Beijing, China

* Corresponding Author: Shanshan Tu. Email: email

(This article belongs to the Special Issue: Recent Advances in Ophthalmic Diseases Diagnosis using AI)

Computers, Materials & Continua 2023, 76(1), 1151-1172.


Glaucoma is a progressive eye disease that can lead to blindness if left untreated. Early detection is crucial to prevent vision loss, but current manual scanning methods are expensive, time-consuming, and require specialized expertise. This study presents a novel approach to Glaucoma detection using the Enhanced Grey Wolf Optimized Support Vector Machine (EGWO-SVM) method. The proposed method involves preprocessing steps such as removing image noise using the adaptive median filter (AMF) and feature extraction using the previously processed speeded-up robust feature (SURF), histogram of oriented gradients (HOG), and Global features. The enhanced Grey Wolf Optimization (GWO) technique is then employed with SVM for classification. To evaluate the proposed method, we used the online retinal images for glaucoma analysis (ORIGA) database, and it achieved high accuracy, sensitivity, and specificity rates of 94%, 92%, and 92%, respectively. The results demonstrate that the proposed method outperforms other current algorithms in detecting the presence or absence of Glaucoma. This study provides a novel and effective approach to Glaucoma detection that can potentially improve the detection process and outcomes.


Cite This Article

APA Style
Latif, J., Tu, S., Xiao, C., Bilal, A., Rehman, S.U. et al. (2023). Enhanced nature inspired-support vector machine for glaucoma detection. Computers, Materials & Continua, 76(1), 1151-1172.
Vancouver Style
Latif J, Tu S, Xiao C, Bilal A, Rehman SU, Ahmad Z. Enhanced nature inspired-support vector machine for glaucoma detection. Comput Mater Contin. 2023;76(1):1151-1172
IEEE Style
J. Latif, S. Tu, C. Xiao, A. Bilal, S.U. Rehman, and Z. Ahmad "Enhanced Nature Inspired-Support Vector Machine for Glaucoma Detection," Comput. Mater. Contin., vol. 76, no. 1, pp. 1151-1172. 2023.

cc This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 573


  • 534


  • 0


Share Link