Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (47)
  • Open Access

    ARTICLE

    An Efficient Encryption and Compression of Sensed IoT Medical Images Using Auto-Encoder

    Passent El-kafrawy1,2, Maie Aboghazalah2,*, Abdelmoty M. Ahmed3, Hanaa Torkey4, Ayman El-Sayed4

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 909-926, 2023, DOI:10.32604/cmes.2022.021713

    Abstract Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common practice. Encryption of medical images is very important to secure patient information. Encrypting these images consumes a lot of time on edge computing; therefore, the use of an auto-encoder for compression before encoding will solve such a problem. In this paper, we use an auto-encoder to compress a medical image before encryption, and an encryption output (vector) is sent out over the network. On the other hand, a decoder was used to reproduce the original image back after the… More >

  • Open Access

    ARTICLE

    VLSI Implementation of Optimized 2D SIMM Chaotic Map for Image Encryption

    M. Sundar Prakash Balaji1,*, V. R. Vijaykumar2, Kamalraj Subramaniam3, M. Kannan4, V. Ayyem Pillai5

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3155-3168, 2023, DOI:10.32604/iasc.2023.028969

    Abstract The current research work proposed a novel optimization-based 2D-SIMM (Two-Dimensional Sine Iterative chaotic map with infinite collapse Modulation Map) model for image encryption. The proposed 2D-SIMM model is derived out of sine map and Iterative Chaotic Map with Infinite Collapse (ICMIC). In this technique, scrambling effect is achieved with the help of Chaotic Shift Transform (CST). Chaotic Shift Transform is used to change the value of pixels in the input image while the substituted value is cyclically shifted according to the chaotic sequence generated by 2D-SIMM model. These chaotic sequences, generated using 2D-SIMM model, are More >

  • Open Access

    ARTICLE

    Wind Driven Optimization-Based Medical Image Encryption for Blockchain-Enabled Internet of Things Environment

    C. S. S. Anupama1, Raed Alsini2, N. Supriya3, E. Laxmi Lydia4, Seifedine Kadry5, Sang-Soo Yeo6, Yongsung Kim7,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3219-3233, 2022, DOI:10.32604/cmc.2022.030267

    Abstract Internet of Things (IoT) and blockchain receive significant interest owing to their applicability in different application areas such as healthcare, finance, transportation, etc. Medical image security and privacy become a critical part of the healthcare sector where digital images and related patient details are communicated over the public networks. This paper presents a new wind driven optimization algorithm based medical image encryption (WDOA-MIE) technique for blockchain enabled IoT environments. The WDOA-MIE model involves three major processes namely data collection, image encryption, optimal key generation, and data transmission. Initially, the medical images were captured from the… More >

  • Open Access

    ARTICLE

    Image Encryption Algorithm Based on New Fractional Beta Chaotic Maps

    Rabha W. Ibrahim1,*, Hayder Natiq2, Ahmed Alkhayyat3, Alaa Kadhim Farhan4, Nadia M. G. Al-Saidi5, Dumitru Baleanu6,7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.1, pp. 119-131, 2022, DOI:10.32604/cmes.2022.018343

    Abstract In this study, a new algorithm of fractional beta chaotic maps is proposed to generate chaotic sequences for image encryption. The proposed technique generates multi random sequences by shuffling the image pixel position. This technique is used to blur the pixels connecting the input and encrypted images and to increase the attack resistance. The proposed algorithm makes the encryption process sophisticated by using fractional chaotic maps, which hold the properties of pseudo-randomness. The fractional beta sequences are utilized to alter the image pixels to decryption attacks. The experimental results proved that the proposed image encryption More >

  • Open Access

    ARTICLE

    Efficient Medical Image Encryption Framework against Occlusion Attack

    May A. Al-Otaibi1,*, Hesham Alhumyani1, Saleh Ibrahim2, Alaa M. Abbas2

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1523-1536, 2022, DOI:10.32604/iasc.2022.026161

    Abstract Image encryption has attracted a lot of interest as an important security application for protecting confidential image data against unauthorized access. An adversary with the power to manipulate cipher image data can crop part of the image out to prevent decryption or render the decrypted image useless. This is known as the occlusion attack. In this paper, we address a vulnerability to the occlusion attack identified in the medical image encryption framework recently proposed in []. We propose adding a pixel scrambling phase to the framework and show through simulation that the extended framework effectively More >

  • Open Access

    ARTICLE

    A Highly Secured Image Encryption Scheme using Quantum Walk and Chaos

    Muhammad Islam Kamran1, Muazzam A. Khan1, Suliman A. Alsuhibany2, Yazeed Yasin Ghadi3, Arshad4, Jameel Arif1, Jawad Ahmad5,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 657-672, 2022, DOI:10.32604/cmc.2022.028876

    Abstract The use of multimedia data sharing has drastically increased in the past few decades due to the revolutionary improvements in communication technologies such as the 4th generation (4G) and 5th generation (5G) etc. Researchers have proposed many image encryption algorithms based on the classical random walk and chaos theory for sharing an image in a secure way. Instead of the classical random walk, this paper proposes the quantum walk to achieve high image security. Classical random walk exhibits randomness due to the stochastic transitions between states, on the other hand, the quantum walk is more… More >

  • Open Access

    ARTICLE

    A Secure and Lightweight Chaos Based Image Encryption Scheme

    Fadia Ali Khan1, Jameel Ahmed1, Fehaid Alqahtani2, Suliman A. Alsuhibany3, Fawad Ahmed4, Jawad Ahmad5,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 279-294, 2022, DOI:10.32604/cmc.2022.028789

    Abstract In this paper, we present an image encryption scheme based on the multi-stage chaos-based image encryption algorithm. The method works on the principle of confusion and diffusion. The proposed scheme containing both confusion and diffusion modules are highly secure and effective as compared to the existing schemes. Initially, an image (red, green, and blue components) is partitioned into blocks with an equal number of pixels. Each block is then processed with Tinkerbell Chaotic Map (TBCM) to get shuffled pixels and shuffled blocks. Composite Fractal Function (CFF) change the value of pixels of each color component More >

  • Open Access

    ARTICLE

    Privacy Preserving Image Encryption with Deep Learning Based IoT Healthcare Applications

    Mohammad Alamgeer1, Saud S. Alotaibi2, Shaha Al-Otaibi3, Nazik Alturki3, Anwer Mustafa Hilal4,*, Abdelwahed Motwakel4, Ishfaq Yaseen4, Mohamed I. Eldesouki5

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1159-1175, 2022, DOI:10.32604/cmc.2022.028275

    Abstract Latest developments in computing and communication technologies are enabled the design of connected healthcare system which are mainly based on IoT and Edge technologies. Blockchain, data encryption, and deep learning (DL) models can be utilized to design efficient security solutions for IoT healthcare applications. In this aspect, this article introduces a Blockchain with privacy preserving image encryption and optimal deep learning (BPPIE-ODL) technique for IoT healthcare applications. The proposed BPPIE-ODL technique intends to securely transmit the encrypted medical images captured by IoT devices and performs classification process at the cloud server. The proposed BPPIE-ODL technique… More >

  • Open Access

    ARTICLE

    Image Encryption Using Multi-Scroll Attractor and Chaotic Logistic Map

    R. Anitha*, B. Vijayalakshmi

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3447-3463, 2022, DOI:10.32604/cmc.2022.021519

    Abstract In the current scenario, data transmission over the network is a challenging task as there is a need for protecting sensitive data. Traditional encryption schemes are less sensitive and less complex thus prone to attacks during transmission. It has been observed that an encryption scheme using chaotic theory is more promising due to its non-linear and unpredictable behavior. Hence, proposed a novel hybrid image encryption scheme with multi-scroll attractors and quantum chaos logistic maps (MSA-QCLM). The image data is classified as inter-bits and intra-bits which are permutated separately using multi scroll attractor & quantum logistic… More >

  • Open Access

    ARTICLE

    Blockchain Enabled Optimal Lightweight Cryptography Based Image Encryption Technique for IIoT

    R. Bhaskaran1, R. Karuppathal1, M. Karthick2, J. Vijayalakshmi3, Seifedine Kadry4, Yunyoung Nam5,*

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1593-1606, 2022, DOI:10.32604/iasc.2022.024902

    Abstract Industrial Internet of Things (IIoT) and Industry 4.0/5.0 offer several interconnections between machinery, equipment, processes, and personnel in diverse application areas namely logistics, supply chain, manufacturing, transportation, and healthcare. The conventional security-based solutions in IIoT environment get degraded due to the third parties. Therefore, the recent blockchain technology (BCT) can be employed to resolve trust issues and eliminate the need for third parties. Therefore, this paper presents a novel blockchain enabled secure optimal lightweight cryptography based image encryption (BC-LWCIE) technique for industry 4.0 environment. In addition, the BC-LWCIE technique involves the design of an optimal More >

Displaying 21-30 on page 3 of 47. Per Page