Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (90)
  • Open Access

    ARTICLE

    An Improved Soft Subspace Clustering Algorithm for Brain MR Image Segmentation

    Lei Ling1, Lijun Huang2, Jie Wang2, Li Zhang2, Yue Wu2, Yizhang Jiang1, Kaijian Xia2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2353-2379, 2023, DOI:10.32604/cmes.2023.028828

    Abstract In recent years, the soft subspace clustering algorithm has shown good results for high-dimensional data, which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features. The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information, which has strong results for image segmentation, but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center. However, the clustering algorithm is susceptible to the influence of noisy data and reliance on initialized clustering centers and falls into a… More >

  • Open Access

    ARTICLE

    TC-Fuse: A Transformers Fusing CNNs Network for Medical Image Segmentation

    Peng Geng1, Ji Lu1, Ying Zhang2,*, Simin Ma1, Zhanzhong Tang2, Jianhua Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 2001-2023, 2023, DOI:10.32604/cmes.2023.027127

    Abstract In medical image segmentation task, convolutional neural networks (CNNs) are difficult to capture long-range dependencies, but transformers can model the long-range dependencies effectively. However, transformers have a flexible structure and seldom assume the structural bias of input data, so it is difficult for transformers to learn positional encoding of the medical images when using fewer images for training. To solve these problems, a dual branch structure is proposed. In one branch, Mix-Feed-Forward Network (Mix-FFN) and axial attention are adopted to capture long-range dependencies and keep the translation invariance of the model. Mix-FFN whose depth-wise convolutions… More >

  • Open Access

    ARTICLE

    Tight Sandstone Image Augmentation for Image Identification Using Deep Learning

    Dongsheng Li, Chunsheng Li*, Kejia Zhang, Tao Liu, Fang Liu, Jingsong Yin, Mingyue Liao

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1209-1231, 2023, DOI:10.32604/csse.2023.034395

    Abstract Intelligent identification of sandstone slice images using deep learning technology is the development trend of mineral identification, and accurate mineral particle segmentation is the most critical step for intelligent identification. A typical identification model requires many training samples to learn as many distinguishable features as possible. However, limited by the difficulty of data acquisition, the high cost of labeling, and privacy protection, this has led to a sparse sample number and cannot meet the training requirements of deep learning image identification models. In order to increase the number of samples and improve the training effect… More >

  • Open Access

    ARTICLE

    Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation

    Muwei Jian1,2,#,*, Ronghua Wu1,#, Hongyu Chen1, Lanqi Fu3, Chengdong Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 705-716, 2023, DOI:10.32604/cmes.2023.027425

    Abstract In intelligent perception and diagnosis of medical equipment, the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases (e.g., diabetes and hypertension). Intelligent auxiliary diagnosis of these diseases depends on the accuracy of the retinal vascular segmentation results. To address this challenge, we design a Dual-Branch-UNet framework, which comprises a Dual-Branch encoder structure for feature extraction based on the traditional U-Net model for medical image segmentation. To be more explicit, we utilize a novel parallel encoder made up of various convolutional modules to enhance the encoder portion of… More >

  • Open Access

    ARTICLE

    Intelligent Beetle Antenna Search with Deep Transfer Learning Enabled Medical Image Classification Model

    Mohamed Ibrahim Waly*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3159-3174, 2023, DOI:10.32604/csse.2023.035900

    Abstract Recently, computer assisted diagnosis (CAD) model creation has become more dependent on medical picture categorization. It is often used to identify several conditions, including brain disorders, diabetic retinopathy, and skin cancer. Most traditional CAD methods relied on textures, colours, and forms. Because many models are issue-oriented, they need a more substantial capacity to generalize and cannot capture high-level problem domain notions. Recent deep learning (DL) models have been published, providing a practical way to develop models specifically for classifying input medical pictures. This paper offers an intelligent beetle antenna search (IBAS-DTL) method for classifying medical… More >

  • Open Access

    REVIEW

    Application of U-Net and Optimized Clustering in Medical Image Segmentation: A Review

    Jiaqi Shao1,#, Shuwen Chen1,2,3,#,*, Jin Zhou1,#, Huisheng Zhu1, Ziyi Wang1, Mackenzie Brown4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2173-2219, 2023, DOI:10.32604/cmes.2023.025499

    Abstract As a mainstream research direction in the field of image segmentation, medical image segmentation plays a key role in the quantification of lesions, three-dimensional reconstruction, region of interest extraction and so on. Compared with natural images, medical images have a variety of modes. Besides, the emphasis of information which is conveyed by images of different modes is quite different. Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors. Therefore, large quantities of automated medical image segmentation methods have been developed. However, until now, researchers have not developed… More >

  • Open Access

    ARTICLE

    Cardiac CT Image Segmentation for Deep Learning–Based Coronary Calcium Detection Using K-Means Clustering and Grabcut Algorithm

    Sungjin Lee1, Ahyoung Lee2, Min Hong3,*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2543-2554, 2023, DOI:10.32604/csse.2023.037055

    Abstract Specific medical data has limitations in that there are not many numbers and it is not standardized. to solve these limitations, it is necessary to study how to efficiently process these limited amounts of data. In this paper, deep learning methods for automatically determining cardiovascular diseases are described, and an effective preprocessing method for CT images that can be applied to improve the performance of deep learning was conducted. The cardiac CT images include several parts of the body such as the heart, lungs, spine, and ribs. The preprocessing step proposed in this paper divided… More >

  • Open Access

    ARTICLE

    An Effective Diagnosis System for Brain Tumor Detection and Classification

    Ahmed A. Alsheikhy1,*, Ahmad S. Azzahrani1, A. Khuzaim Alzahrani2, Tawfeeq Shawly3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2021-2037, 2023, DOI:10.32604/csse.2023.036107

    Abstract A brain tumor is an excessive development of abnormal and uncontrolled cells in the brain. This growth is considered deadly since it may cause death. The brain controls numerous functions, such as memory, vision, and emotions. Due to the location, size, and shape of these tumors, their detection is a challenging and complex task. Several efforts have been conducted toward improved detection and yielded promising results and outcomes. However, the accuracy should be higher than what has been reached. This paper presents a method to detect brain tumors with high accuracy. The method works using… More >

  • Open Access

    ARTICLE

    Nonlinear Teager-Kaiser Infomax Boost Clustering Algorithm for Brain Tumor Detection Technique

    P. M. Siva Raja1,*, S. Brinthakumari2, K. Ramanan3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2589-2599, 2023, DOI:10.32604/csse.2023.028542

    Abstract Brain tumor detection and division is a difficult tedious undertaking in clinical image preparation. When it comes to the new technology that enables accurate identification of the mysterious tissues of the brain, magnetic resonance imaging (MRI) is a great tool. It is possible to alter the tumor’s size and shape at any time for any number of patients by using the Brain picture. Radiologists have a difficult time sorting and classifying tumors from multiple images. Brain tumors may be accurately detected using a new approach called Nonlinear Teager-Kaiser Iterative Infomax Boost Clustering-Based Image Segmentation (NTKFIBC-IS).… More >

  • Open Access

    ARTICLE

    Electrical Tree Image Segmentation Using Hybrid Multi Scale Line Tracking Algorithm

    Mohd Annuar Isa1, Mohamad Nur Khairul Hafizi Rohani1,*, Baharuddin Ismail1, Mohamad Kamarol Jamil1, Muzamir Isa1, Afifah Shuhada Rosmi1, Mohd Aminudin Jamlos2, Wan Azani Mustafa1, Nurulbariah Idris3, Abdullahi Abubakar Mas’ud4

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 741-760, 2023, DOI:10.32604/cmc.2023.036077

    Abstract Electrical trees are an aging mechanism most associated with partial discharge (PD) activities in crosslinked polyethylene (XLPE) insulation of high-voltage (HV) cables. Characterization of electrical tree structures gained considerable attention from researchers since a deep understanding of the tree morphology is required to develop new insulation material. Two-dimensional (2D) optical microscopy is primarily used to examine tree structures and propagation shapes with image segmentation methods. However, since electrical trees can emerge in different shapes such as bush-type or branch-type, treeing images are complicated to segment due to manifestation of convoluted tree branches, leading to a… More >

Displaying 11-20 on page 2 of 90. Per Page