Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Impact and Residual Flexural Properties of 3D Integrated Woven Spacer Composites

    Mahim Masfikun Hannan, Deng’an Cai*, Xinwei Wang

    Journal of Polymer Materials, Vol.42, No.3, pp. 873-891, 2025, DOI:10.32604/jpm.2025.064978 - 30 September 2025

    Abstract This study investigates the low-velocity impact and post-impact flexural properties of 3D integrated woven spacer composites, focusing on their orthotropic behavior when tested along two principal directions, i.e., warp (X-type) and weft (Y-type) directions. The same composite material was tested in these orientations to evaluate the differences in impact resistance and residual bending strength. Specimens were fabricated via vacuum-assisted molding and tested at 2, 3, 5, and 7 J impact energies using an Instron Ceast 9350 drop-weight impact testing machine, in accordance with ASTM D7136. Post-impact flexural tests were performed using a four-point bending method… More >

  • Open Access

    REVIEW

    Review of the Research on the Impact Resistance Mechanical Performance of Prestressed Segmental Precast and Assembled Piers

    Chengquan Wang1,2, Rongyang Liu1, Xinquan Wang1,2,*, Boyan Ping3, Haimin Qian1,2, Xiao Li1, Yuhan Liang1

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 819-850, 2025, DOI:10.32604/sdhm.2025.060580 - 30 June 2025

    Abstract This article provides an overview of the current development status of prestressed segmental precast and assembled piers, Emphasis was placed on analyzing the stress characteristics of bridge piers under impact. The concept of recoverable functional design and its application prospects were elaborated, and finally, the research on the impact resistance performance of prestressed segmental precast and assembled piers was discussed. Research has shown that optimizing design and material selection can effectively enhance the impact resistance and structural durability of bridge piers. At the same time, the introduction of the concept of recoverable functionality provides new More >

  • Open Access

    ARTICLE

    Numerical Simulation of the Influence of Water Flow on the Piers of a Bridge for Different Incidence Angles

    Danqing Huang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 845-854, 2023, DOI:10.32604/fdmp.2022.020314 - 29 September 2022

    Abstract A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles. In particular, a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’ surface. The results show that the deflection of the flow is non-monotonic. It first increases and then decreases with an increase in the skew angle. More >

  • Open Access

    ARTICLE

    Research on the Bending Impact Resistance and Transverse Fracture Characteristics of Bamboo under the Action of Falling Weight

    Hao Jia1,2, Benhua Fei1,2, Changhua Fang1,2, Huanrong Liu1,2, Xiubiao Zhang1,2, Xinxin Ma1,2, Fengbo Sun1,2,*

    Journal of Renewable Materials, Vol.11, No.1, pp. 473-490, 2023, DOI:10.32604/jrm.2022.023548 - 10 August 2022

    Abstract Drop weight impact tester was used to accurately measure the bending impact resistance of various parts of Phyllostachys edulis, commonly known as moso bamboo, with a growth cycle of 3–8 years. Cellulose crystallinity in the bottom (B), middle (M) and top (T) of bamboo at different ages was calculated using peak height analysis in X-ray diffraction. Heatmap of Spearman correlation analysis was used to represent the correlation between chemical composition and impact mechanics. The breaking load (BL), fracture energy (FE) and impact deflection (ID) of 3–8-yearold bamboo were found to be in the range of ~670–2120 N, ~5.17–15.55 J,… More > Graphic Abstract

    Research on the Bending Impact Resistance and Transverse Fracture Characteristics of Bamboo under the Action of Falling Weight

  • Open Access

    ARTICLE

    Analysis of the Impact Resistance of Photovoltaic Panels Based on the Effective Thickness Method

    Jian Gong1, Lingzhi Xie1,2,*, Yongxue Li1, Zhichun Ni3, Qingzhu Wei3, Yupeng Wu4, Haonan Cheng5

    Journal of Renewable Materials, Vol.10, No.1, pp. 33-51, 2022, DOI:10.32604/jrm.2021.016262 - 27 July 2021

    Abstract Based on the recent development of renewable energy utilization technology, in addition to centralized photovoltaic power plants, distributed photovoltaic power generation systems represented by building-integrated photovoltaic systems are frequently employed for power supply. Therefore, in the architectural design, the double-glass photovoltaic module used in the integrated photovoltaic building system puts forward a higher load-bearing capacity requirement and the corresponding simplified method of carrying capacity check. This article focuses on the simplified method of checking the bearing capacity of the four-sided simply supported double-glass photovoltaic module. First, the principle of equivalent stiffness is used to calculate… More > Graphic Abstract

    Analysis of the Impact Resistance of Photovoltaic Panels Based on the Effective Thickness Method

  • Open Access

    ABSTRACT

    Characterization of impact resistance of lightweight aggregate cellular concretes (LACC)

    Eun A Hwang1, Haeng-Ki Lee1, Jong Won Kwark2, Jung Woo Lee2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.1, pp. 11-12, 2009, DOI:10.3970/icces.2009.012.011

    Abstract Concrete structures such as concrete safety barriers are often subjected to direct impact loads mainly due to vehicle crash impact. In this case, the impact resistance is one of the most critical characteristic of concrete used in such structures. The present study aims to characterize the impact resistance of lightweight aggregate cellular concrete (LACC), which will be used in concrete barriers. Impact tests on LACC specimens were carried out based on the repeated drop-weight impact test guideline recommend by ACI committee 544. Impact resistance and compressive strength of the LACC specimens were characterized and the More >

Displaying 1-10 on page 1 of 6. Per Page