Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (135)
  • Open Access

    ARTICLE

    Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe3O4 Carbon Nanotubes

    Jiahao Liu1,#, Xinyu Zhang1,#, Huiwei Wang1, Yupeng Li1, Shan Jin1, Guanxian Qiu1, Ce Sun1,2,*, Haiyan Tan1, Yanhua Zhang1,2,*

    Journal of Renewable Materials, Vol.13, No.4, pp. 669-685, 2025, DOI:10.32604/jrm.2025.02025-0042 - 21 April 2025

    Abstract In recent years, degradable materials to replace petroleum-based materials in preparing high-performance foams have received much research attention. Degradable polymer foaming mostly uses supercritical fluids, especially carbon dioxide (Sc-CO2). The main reason is that the foams obtained by Sc-CO2 foaming have excellent performance, and the foaming agent is green and pollution-free. In current research, Poly (butylene adipate-co-terephthalate) (PBAT), poly (lactic acid) (PLA), and other degradable polymers are generally used as the main foaming materials, but the foaming performance of these degradable polyesters is poor and requires modification. In this work, 10% PLA was added to PBAT to… More > Graphic Abstract

    Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe<sub><b>3</b></sub>O<sub><b>4</b></sub> Carbon Nanotubes

  • Open Access

    REVIEW

    From Cell Division to Stress Tolerance: The Versatile Roles of Cytokinins in Plants

    Antonio Rodrigues da Cunha Neto1, Alexandra dos Santos Ambrósio1, Arlinda de Jesus Rodrigues Resende1, Breno Régis Santos1, Michele Carla Nadal2,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.3, pp. 539-560, 2025, DOI:10.32604/phyton.2025.061776 - 31 March 2025

    Abstract Cytokinins are plant hormones that are essential for plant growth and development and are involved in a variety of processes. They are synthesized by the modification of adenine with an isoprenoid chain, resulting in cytokinins such as isopentenyladenine and zeatin. The levels of these hormones are regulated by conjugation, degradation and oxidation processes that modulate their activity. Cytokinins are perceived by cells through specific receptors that, when activated, trigger signaling cascades responsible for regulating the expression of genes critical for development. In addition, cytokinins interact with other hormones, such as auxins, to coordinate plant growth… More >

  • Open Access

    ARTICLE

    Optimizing Efficiency and Performance in a Rankine Cycle Power Plant Analysis

    Ramesh Kumar1,2, Abdullah Bin Queyam3, Manish Kumar Singla1,4,*, Mohamed Louzazni5, Mishra Dipak Kumar6

    Energy Engineering, Vol.122, No.4, pp. 1373-1386, 2025, DOI:10.32604/ee.2025.058058 - 31 March 2025

    Abstract Enhancing the efficiency of Rankine cycles is crucial for improving the performance of thermal power plants, as it directly impacts operational costs and emissions in light of energy transition goals. This study sets itself apart from existing research by applying a novel optimization technique to a basic ideal Rankine cycle, focusing on a specific power plant that has not been previously analyzed. Currently, this cycle operates at 41% efficiency and a steam quality of 76%, constrained by fixed operational parameters. The primary objectives are to increase thermal efficiency beyond 46% and raise steam quality above… More >

  • Open Access

    REVIEW

    Progress in the Understanding and Modeling of Cavitation and Related Applications

    Jianying Li1,2,*, Donglai Li1,2, Tiefeng Li1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.3, pp. 445-470, 2025, DOI:10.32604/fdmp.2025.062337 - 01 April 2025

    Abstract Hydrodynamic cavitation, as an efficient technique applied in many physical and chemical treatment methods, has been widely used by various industries and in several technological fields. Relevant generators, designed with specific structures and parameters, can produce cavitation effects, thereby enabling effective treatment and reasonable transformation of substances. This paper reviews the design principles, performance, and practical applications associated with different types of cavitation generators, aiming to provide theoretical support for the optimization of these systems. It systematically analyzes the underpinning mechanisms and the various factors influencing the cavitation phenomena, also conducting a comparative analysis of More > Graphic Abstract

    Progress in the Understanding and Modeling of Cavitation and Related Applications

  • Open Access

    ARTICLE

    Combustion Simulation and Structure Improvement of Internal Combustion Hot Blast Stove

    Ruibin Wang, Fuyong Su*, Shuo Huang, Shengyong Ma

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 325-344, 2025, DOI:10.32604/fhmt.2024.058835 - 26 February 2025

    Abstract The main function of a hot blast stove is to deliver a high-temperature and stable hot blast to the blast furnace, which has an important impact on the blast furnace ironmaking process. To improve the combustion efficiency, a simulation model of the combustion part of an internal combustion hot blast stove was established by combining turbulence, combustion, and radiation models. Based on the original model, a new type of internal combustion hot blast stove is proposed. The results indicated insufficient combustion in the original structure and higher CO concentrations in the corners of the eyes… More >

  • Open Access

    REVIEW

    Enhancing Plant Resilience to Abiotic Stress: The Power of Biostimulants

    Su-Ee Lau1,2,*, Lucas Wei Tze Lim3, Mohd Fadhli Hamdan4, Colin Chan5, Noor Baity Saidi6, Janna Ong-Abdullah6, Boon Chin Tan1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.1, pp. 1-31, 2025, DOI:10.32604/phyton.2025.059930 - 24 January 2025

    Abstract Abiotic stresses such as drought, heat, salinity, and heavy metal contamination severely affect global agricultural productivity. Between 2005 and 2015, droughts caused losses of approximately USD 29 billion in developing countries, and from 2008 to 2018, droughts accounted for over 34% of crop and livestock yield losses, totaling about USD 37 billion. To support the growing human population, agricultural output must increase substantially, necessitating a 60%–100% rise in crop productivity to meet the escalating demand. To address environmental challenges, organic, inorganic, and microbial biostimulants are increasingly employed to enhance plant resilience through various morphological, physiological,… More >

  • Open Access

    ARTICLE

    Combining Ability and Heterotic Effects in Newly Developed Early Maturing and High-Yielding Maize Hybrids under Low and Recommended Nitrogen Conditions

    Mohamed M. Kamara1,*, Nora M. Al Aboud2, Hameed Alsamadany3, Abeer M. Kutby4, Imen Ben Abdelmalek5, Diaa Abd El-Moneim6, Motrih Al-Mutiry7

    Phyton-International Journal of Experimental Botany, Vol.94, No.1, pp. 101-122, 2025, DOI:10.32604/phyton.2025.058033 - 24 January 2025

    Abstract Nitrogen (N) is a crucial nutrient vital for the growth and productivity of maize. However, excessive nitrogen application can result in numerous environmental and ecological problems, such as water pollution, biodiversity loss, and greenhouse gas emissions. Therefore, breeding maize hybrids resilient to low nitrogen conditions is crucial for sustainable agriculture, especially under low nitrogen conditions. Consequently, this study aimed to evaluate the combining ability and heterosis of maize lines, recognize promising hybrids, and study gene action controlling key traits under low and recommended N stress conditions. The half-diallel mating design hybridized seven maize inbreds, resulting… More >

  • Open Access

    ARTICLE

    Improvement of the Birch Outer Bark Plywood Binder: The Impact of the Bark Fractional Composition and the Binder Preparation Methodology

    Rūdolfs Bērziņš*, Aigars Pāže, Guntis Sosins, Daniela Godiņa, Laima Vēvere, Jānis Rižikovs

    Journal of Renewable Materials, Vol.12, No.12, pp. 2095-2113, 2024, DOI:10.32604/jrm.2024.056769 - 20 December 2024

    Abstract Birch outer bark (BOB) from Betula pendula Roth. is a unique and valuable biomass feedstock that contains suberin. The biopolyester suberin is built from bifunctional fatty acids-suberinic acids (SA)-which can be obtained through a depolymerization process in an alkaline medium and used as a binder due to their adhesive properties. The aim of this study was to develop the SA-containing binder and identify suitable pressing conditions to produce plywood that meets the shear strength requirements of the EN 314-2 standard 3rd moisture resistance class for bonding quality, ensuring durability in unprotected exterior conditions (shear strength ≥… More > Graphic Abstract

    Improvement of the Birch Outer Bark Plywood Binder: The Impact of the Bark Fractional Composition and the Binder Preparation Methodology

  • Open Access

    ARTICLE

    Modification and Experimental Verification of the Performance Improvement of Domestic Dehumidifiers

    Xin Qi1,2, Xingtao Shi1, Yingwen Liu1,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.6, pp. 1661-1678, 2024, DOI:10.32604/fhmt.2024.058959 - 19 December 2024

    Abstract After optimizing the compressor design, condenser tube diameter, and tube row arrangement, air supply volumetric flow rate, and refrigerant charge of the domestic dehumidifier. The optimized design schemes were obtained from the original combinations by non-dominated sorting, and the optimized design schemes were experimentally verified under three environmental conditions according to the test method of T/CAS 342-2020 to obtain a complete idea of dehumidifier multi-component improvement. The results show that the dehumidifying capacity of Scheme 5 is slightly increased by 2.5% at 27°C/60% RH, and its energy factor is significantly increased by 24.6%. When the… More >

  • Open Access

    PROCEEDINGS

    Investigation on Microstructural Evolution and Corrosion Resistance Improvement of E690 Steel via Underwater Laser Directed Energy Deposition

    Mingzhi Chen1, Zhandong Wang2, Guifang Sun1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012203

    Abstract Marine environments pose severe corrosion challenges to underwater equipment, thereby leading to significant risks and demanding immediate in-situ restoration. Here we developed an underwater laser directed energy deposition (UDMD) technique to repair the E690 steel and enhance its corrosion resistance. Systematic investigations about the underwater pressure (P) and 316L stainless steel (SS316L) coatings on the microstructure, mechanical properties, and corrosion resistance of the repaired E690 steel were conducted. Results show that water cooling can refine grain, promote the formation of lath martensite, and increase dislocation density. No obvious relationship between the pressure and microstructure evolution… More >

Displaying 1-10 on page 1 of 135. Per Page