Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    PROCEEDINGS

    The Instability Mechanism of Moving Contact Line on the Surface of Soluble Solids

    Xudong Chen1,2, Quanzi Yuan1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09318

    Abstract The wetting and instability of liquids on the surface of soluble solids is a problem of interface stability at multiple scales, which is coupled by mechanics and chemistry. This problem is crucial to application fields such as micro-nano processing and microscopic observation. In this work, the instability process of moving contact lines on the surfaces of soluble solids is investigated in experiments, theories, and simulations. Based on the unique shapes of the surfaces of soluble solids caused by instability in experiments, the concept of pagoda instability is proposed. Then the Cahn-Hilliard interfaces are developed to establish the evolution model of… More >

  • Open Access

    ARTICLE

    Numerical Prediction of Young's and Shear Moduli of Carbon Nanotube Composites Incorporating Nanoscale and Interfacial Effects

    G.I. Giannopoulos1, S.K. Georgantzinos2, D.E. Katsareas2, N.K. Anifantis2

    CMES-Computer Modeling in Engineering & Sciences, Vol.56, No.3, pp. 231-248, 2010, DOI:10.3970/cmes.2010.056.231

    Abstract A hybrid finite element formulation, combining nanoscopic and macroscopic considerations is proposed, for the prediction of the elastic mechanical properties of single walled carbon nanotube (SWCNT)-based composites. The nanotubes are modeled according to the molecular mechanics theory via the use of spring elements, while the matrix is modeled as a continuum medium. A new formulation concerning the load transfer between the nanotubes and matrix is proposed. The interactions between the two phases are implemented by utilizing appropriate stiffness variations describing a heterogeneous interfacial region. A periodic distribution and orientation of the SWCNTs is considered. Thereupon, the nanocomposite is modeled using… More >

Displaying 1-10 on page 1 of 2. Per Page