Abdelhakim Lahrech1, Tahar Tayebi2, Mohamed Kallel3,*, Mehdi Hashemi-Tilehnoee4,*, Ali J. Chamkha5
CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 359-385, 2025, DOI:10.32604/cmes.2025.067099
- 31 July 2025
Abstract The study considers numerical findings regarding magneto-thermosolutal-aided natural convective flow of alumina/water-based nanofluid filled in a non-Darcian porous horizontal concentric annulus. Two equations are assumed to evaluate the thermal fields in the porous medium under Local Thermal Non-Equilibrium (LTNE) conditions, along with the Darcy-Brinkman-Forchheimer model for the flow. By imposing distinct and constant temperatures and concentrations on both internal and external cylinders, thermosolutal natural convection is induced in the annulus. We apply the finite volume method to solve the dimensionless governing equations numerically. The thermal conductivity and viscosity of the nanofluid mixture are determined utilizing… More >