Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access


    Numerical Analysis of Three-Layer Deep Tunnel Composite Structure

    Weiwei Sun1, Hongping Min2, Jianzhong Chen1,*, Chao Ruan2, Yanjun Zhang2, Lei Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.1, pp. 223-239, 2021, DOI:10.32604/cmes.2021.015208

    Abstract To date, with the increasing attention of countries to urban drainage system, more and more regions around the world have begun to build water conveyance tunnels, sewage pressure deep tunnels and so on. However, the sufficient bearing capacity and corrosion resistance of the structure, which can ensure the actual service life and safety of the tunnel, remain to be further improved. Glass Fiber Reinforced Plastics (GFRP) pipe, with light weight, high strength and corrosion resistance, has the potential to be applied to the deep tunnel structure. This paper proposed a new composite structure of deep… More >

  • Open Access


    Interactions of Three Parallel Square-Hole Cracks in an Infinite Plate Subjected to Internal Pressure

    Changqing Miao1, Yintao Wei2, Xiangqiao Yan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.6, pp. 519-534, 2013, DOI:10.3970/cmes.2013.095.519

    Abstract By using a hybrid displacement discontinuity method, the interactions of three parallel square-hole cracks in an infinite plate subjected to internal pressure are investigated in this paper. Numerical examples are included to illustrate that the numerical approach is very simple and effective for calculating the stress intensity factors (SIFs) of complex plane crack problems. Many numerical results of the SIFs are given and discussed. It is found that a square hole has a shielding effect on crack(s) emanating from the hole. The finding perhaps has an important meaning in engineering. More >

  • Open Access


    On Macroscopic Behaviors of Shape Memory Alloy Thick-walled Cylinder Under Combined Internal Pressure and Radial Temperature Gradient

    Bingfei Liu1, Guansuo Dui2,3, Lijun Xue2, Benming Xie1

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.3, pp. 239-260, 2013, DOI:10.32604/cmes.2013.094.239

    Abstract Analytical solutions are derived for the macroscopic behaviors of a Shape Memory Alloy (SMA) thick-walled cylinder subjected to internal pressure and radial temperature gradient. The Tresca transformation criterion and linear hardening are used. Equations are given for the radial and circumferential stresses, transformation strains and martensite volume fractions at both the elastic step and the transformation step. Numerical results are presented and in good agreement with the finite element simulations. More >

  • Open Access


    The Influence of the Imperfectness of Contact Conditions on the Critical Velocity of the Moving Load Acting in the Interior of the Cylinder Surrounded with Elastic Medium

    M. Ozisik1,*, M. A. Mehdiyev2, S. D. Akbarov2,3

    CMC-Computers, Materials & Continua, Vol.54, No.2, pp. 103-136, 2018, DOI:10.3970/cmc.2018.054.103

    Abstract The dynamics of the moving-with-constant-velocity internal pressure acting on the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium is studied within the scope of the piecewise homogeneous body model by employing the exact field equations of the linear theory of elastodynamics. It is assumed that the internal pressure is point-located with respect to the cylinder axis and is axisymmetric in the circumferential direction. Moreover, it is assumed that shear-spring type imperfect contact conditions on the interface between the cylinder and surrounding elastic medium are satisfied. The focus is on the… More >

  • Open Access


    Analytical Solution of Thermo-elastic Stresses and Deformation of Functionally Graded Rotating Hollow Discs with Radially Varying Thermo-mechanical Properties under Internal Pressure

    M.R. Akbari1, J. Ghanbari1,2

    CMC-Computers, Materials & Continua, Vol.45, No.3, pp. 187-202, 2015, DOI:10.3970/cmc.2015.045.187

    Abstract Exact analytical solution for functionally graded hollow discs under internal pressure, thermal load and rotation are provided in this paper. Material properties of discs, i.e. elastic modulus, density and thermal expansion coefficient are assumed to vary in radial direction. Two power functions are assumed for property dependency to study various types of functional grading of materials in the discs. Assuming small deformations, a differential equation is obtained and solved for the Airy stress function. The effects of various grading functions on the stress and deformation distribution are studied and an optimum value for the power More >

Displaying 1-10 on page 1 of 5. Per Page