Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (407)
  • Open Access

    ARTICLE

    Suboptimal Feature Selection Techniques for Effective Malicious Traffic Detection on Lightweight Devices

    So-Eun Jeon1, Ye-Sol Oh1, Yeon-Ji Lee1, Il-Gu Lee1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1669-1687, 2024, DOI:10.32604/cmes.2024.047239

    Abstract With the advancement of wireless network technology, vast amounts of traffic have been generated, and malicious traffic attacks that threaten the network environment are becoming increasingly sophisticated. While signature-based detection methods, static analysis, and dynamic analysis techniques have been previously explored for malicious traffic detection, they have limitations in identifying diversified malware traffic patterns. Recent research has been focused on the application of machine learning to detect these patterns. However, applying machine learning to lightweight devices like IoT devices is challenging because of the high computational demands and complexity involved in the learning process. In… More >

  • Open Access

    REVIEW

    A Review of Hybrid Cyber Threats Modelling and Detection Using Artificial Intelligence in IIoT

    Yifan Liu1, Shancang Li1,*, Xinheng Wang2, Li Xu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1233-1261, 2024, DOI:10.32604/cmes.2024.046473

    Abstract The Industrial Internet of Things (IIoT) has brought numerous benefits, such as improved efficiency, smart analytics, and increased automation. However, it also exposes connected devices, users, applications, and data generated to cyber security threats that need to be addressed. This work investigates hybrid cyber threats (HCTs), which are now working on an entirely new level with the increasingly adopted IIoT. This work focuses on emerging methods to model, detect, and defend against hybrid cyber attacks using machine learning (ML) techniques. Specifically, a novel ML-based HCT modelling and analysis framework was proposed, in which regularisation and Random Forest were More >

  • Open Access

    ARTICLE

    A Hybrid Machine Learning Framework for Security Intrusion Detection

    Fatimah Mudhhi Alanazi*, Bothina Abdelmeneem Elsobky, Shaimaa Aly Elmorsy

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 835-851, 2024, DOI:10.32604/csse.2024.042401

    Abstract Proliferation of technology, coupled with networking growth, has catapulted cybersecurity to the forefront of modern security concerns. In this landscape, the precise detection of cyberattacks and anomalies within networks is crucial, necessitating the development of efficient intrusion detection systems (IDS). This article introduces a framework utilizing the fusion of fuzzy sets with support vector machines (SVM), named FSVM. The core strategy of FSVM lies in calculating the significance of network features to determine their relative importance. Features with minimal significance are prudently disregarded, a method akin to feature selection. This process not only curtails the… More >

  • Open Access

    ARTICLE

    Machine Learning Empowered Security and Privacy Architecture for IoT Networks with the Integration of Blockchain

    Sohaib Latif1,*, M. Saad Bin Ilyas1, Azhar Imran2, Hamad Ali Abosaq3, Abdulaziz Alzubaidi4, Vincent Karovič Jr.5

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 353-379, 2024, DOI:10.32604/iasc.2024.047080

    Abstract The Internet of Things (IoT) is growing rapidly and impacting almost every aspect of our lives, from wearables and healthcare to security, traffic management, and fleet management systems. This has generated massive volumes of data and security, and data privacy risks are increasing with the advancement of technology and network connections. Traditional access control solutions are inadequate for establishing access control in IoT systems to provide data protection owing to their vulnerability to single-point OF failure. Additionally, conventional privacy preservation methods have high latency costs and overhead for resource-constrained devices. Previous machine learning approaches were… More >

  • Open Access

    ARTICLE

    A Framework for Driver Drowsiness Monitoring Using a Convolutional Neural Network and the Internet of Things

    Muhamad Irsan1,2,*, Rosilah Hassan2, Anwar Hassan Ibrahim3, Mohamad Khatim Hasan2, Meng Chun Lam2, Wan Mohd Hirwani Wan Hussain4

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 157-174, 2024, DOI:10.32604/iasc.2024.042193

    Abstract One of the major causes of road accidents is sleepy drivers. Such accidents typically result in fatalities and financial losses and disadvantage other road users. Numerous studies have been conducted to identify the driver’s sleepiness and integrate it into a warning system. Most studies have examined how the mouth and eyelids move. However, this limits the system’s ability to identify drowsiness traits. Therefore, this study designed an Accident Detection Framework (RPK) that could be used to reduce road accidents due to sleepiness and detect the location of accidents. The drowsiness detection model used three facial… More >

  • Open Access

    ARTICLE

    SCIRD: Revealing Infection of Malicious Software in Edge Computing-Enabled IoT Networks

    Jiehao Ye, Wen Cheng, Xiaolong Liu, Wenyi Zhu, Xuan’ang Wu, Shigen Shen*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2743-2769, 2024, DOI:10.32604/cmc.2024.049985

    Abstract The Internet of Things (IoT) has characteristics such as node mobility, node heterogeneity, link heterogeneity, and topology heterogeneity. In the face of the IoT characteristics and the explosive growth of IoT nodes, which brings about large-scale data processing requirements, edge computing architecture has become an emerging network architecture to support IoT applications due to its ability to provide powerful computing capabilities and good service functions. However, the defense mechanism of Edge Computing-enabled IoT Nodes (ECIoTNs) is still weak due to their limited resources, so that they are susceptible to malicious software spread, which can compromise… More >

  • Open Access

    REVIEW

    Federated Learning on Internet of Things: Extensive and Systematic Review

    Meenakshi Aggarwal1, Vikas Khullar1, Sunita Rani2, Thomas André Prola3,4,5, Shyama Barna Bhattacharjee6, Sarowar Morshed Shawon7, Nitin Goyal8,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1795-1834, 2024, DOI:10.32604/cmc.2024.049846

    Abstract The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation. However, FL development for IoT is still in its infancy and needs to be explored in various areas to understand the key challenges for deployment in real-world scenarios. The paper systematically reviewed the available literature using the PRISMA guiding principle. The study aims to provide a detailed overview of the increasing use of FL in IoT networks, including the architecture and challenges. A systematic review approach is used to collect, categorize and analyze FL-IoT-based articles.… More >

  • Open Access

    ARTICLE

    MAIPFE: An Efficient Multimodal Approach Integrating Pre-Emptive Analysis, Personalized Feature Selection, and Explainable AI

    Moshe Dayan Sirapangi1, S. Gopikrishnan1,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2229-2251, 2024, DOI:10.32604/cmc.2024.047438

    Abstract Medical Internet of Things (IoT) devices are becoming more and more common in healthcare. This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way. Existing methods, while useful, have limitations in predictive accuracy, delay, personalization, and user interpretability, requiring a more comprehensive and efficient approach to harness modern medical IoT devices. MAIPFE is a multimodal approach integrating pre-emptive analysis, personalized feature selection, and explainable AI for real-time health… More >

  • Open Access

    ARTICLE

    Design Pattern and Challenges of Federated Learning with Applications in Industrial Control System

    Hina Batool1, Jiuyun Xu1,*, Ateeq Ur Rehman2, Habib Hamam3,4,5,6

    Journal on Artificial Intelligence, Vol.6, pp. 105-128, 2024, DOI:10.32604/jai.2024.049912

    Abstract Federated Learning (FL) appeared as an encouraging approach for handling decentralized data. Creating a FL system needs both machine learning (ML) knowledge and thinking about how to design system software. Researchers have focused a lot on the ML side of FL, but have not paid enough attention to designing the software architecture. So, in this survey, a set of design patterns is described to tackle the design issues. Design patterns are like reusable solutions for common problems that come up when designing software architecture. This paper focuses on (1) design patterns such as architectures, frameworks,… More >

  • Open Access

    REVIEW

    Recent Developments in Authentication Schemes Used in Machine-Type Communication Devices in Machine-to-Machine Communication: Issues and Challenges

    Shafi Ullah1, Sibghat Ullah Bazai1,*, Mohammad Imran2, Qazi Mudassar Ilyas3,*, Abid Mehmood4, Muhammad Asim Saleem5, Muhmmad Aasim Rafique3, Arsalan Haider6, Ilyas Khan7, Sajid Iqbal3, Yonis Gulzar4, Kauser Hameed3

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 93-115, 2024, DOI:10.32604/cmc.2024.048796

    Abstract Machine-to-machine (M2M) communication plays a fundamental role in autonomous IoT (Internet of Things)-based infrastructure, a vital part of the fourth industrial revolution. Machine-type communication devices (MTCDs) regularly share extensive data without human intervention while making all types of decisions. These decisions may involve controlling sensitive ventilation systems maintaining uniform temperature, live heartbeat monitoring, and several different alert systems. Many of these devices simultaneously share data to form an automated system. The data shared between machine-type communication devices (MTCDs) is prone to risk due to limited computational power, internal memory, and energy capacity. Therefore, securing the… More >

Displaying 1-10 on page 1 of 407. Per Page