Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (98)
  • Open Access

    ARTICLE

    Two-Dimensional Interpolation Criterion Using DFT Coefficients

    Yuan Chen1, Liangtao Duan1, Weize Sun2, *, Jingxin Xu3

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 849-859, 2020, DOI:10.32604/cmc.2020.07115

    Abstract In this paper, we address the frequency estimator for 2-dimensional (2-D) complex sinusoids in the presence of white Gaussian noise. With the use of the sinc function model of the discrete Fourier transform (DFT) coefficients on the input data, a fast and accurate frequency estimator is devised, where only the DFT coefficient with the highest magnitude and its four neighbors are required. Variance analysis is also included to investigate the accuracy of the proposed algorithm. Simulation results are conducted to demonstrate the superiority of the developed scheme, in terms of the estimation performance and computational complexity. More >

  • Open Access

    ARTICLE

    Image Interpolation via Gaussian-Sinc Interpolators with Partition of Unity

    Gang Xu1, *, Ran Ling1, Lishan Deng1, Qing Wu1, Weiyin Ma2

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 309-319, 2020, DOI:10.32604/cmc.2020.06509

    Abstract In this paper, we propose a novel image interpolation method by using Gaussian-Sinc automatic interpolators with partition of unity property. A comprehensive comparison is made with classical image interpolation methods, such as the bicubic interpolation, Lanczos interpolation, cubic Schaum interpolation, cubic B-spline interpolation and cubic Moms interpolation. The experimental results show the effectiveness of the improved image interpolation method via some image quality metrics such as PSNR and SSIM. More >

  • Open Access

    ARTICLE

    A Parametric Study of Mesh Free Interpolation Based Recovery Techniques in Finite Element Elastic Analysis

    Mohd. Ahmed1,*, Mohamed Hechmi El Ouni1, Devinder Singh2, Nabil Ben Kahla1

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 687-786, 2019, DOI:10.32604/cmes.2019.06886

    Abstract The paper presents a parametric study on interpolation techniques based postprocessed error estimation in finite element elastic analysis by varying important parameters of recovery, interpolation scheme and type of patch construction. The quality of error estimation with recovery parameters is compared in terms of local and global effectivity of error estimation, rate of error convergence, and adaptively refined meshes. A mesh free moving least square interpolation technique with proven reliability and effectivity is introduced for improving the recovery of finite element solution errors. The post-processed finite element solutions of elastic problems are presented for performance study under different parameters of… More >

  • Open Access

    ARTICLE

    The MLPG Method for Crack Analysis in Anisotropic Functionally Graded Materials

    J. Sladek1, V. Sladek, Ch.Zhang2

    Structural Durability & Health Monitoring, Vol.1, No.2, pp. 131-144, 2005, DOI:10.3970/sdhm.2005.001.131

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed for crack analysis in two-dimensional (2-d), anisotropic and linear elastic solids with continuously varying material properties. Both quasi-static and transient elastodynamic problems are considered. For time-dependent problems, the Laplace-transform technique is utilized. A unit step function is used as the test function in the local weak-form. It is leading to local boundary integral equations (LBIEs) involving only a domain-integral in the case of transient dynamic problems. The analyzed domain is divided into small subdomains with a circular shape. The moving least-squares (MLS) method is adopted for approximating the physical… More >

  • Open Access

    ARTICLE

    The Generalized Interpolation Material Point Method

    S. G. Bardenhagen1,2, E. M. Kober3

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 477-496, 2004, DOI:10.3970/cmes.2004.005.477

    Abstract The Material Point Method (MPM) discrete solution procedure for computational solid mechanics is generalized using a variational form and a Petrov–Galerkin discretization scheme, resulting in a family of methods named the Generalized Interpolation Material Point(GIMP) methods. The generalizationpermits identification with aspects of other point or node based discrete solution techniques which do not use a body–fixed grid, i.e. the “meshless methods”. Similarities are noted and some practical advantages relative to some of these methods are identified. Examples are used to demonstrate and explain numerical artifact noise which can be expected inMPM calculations. Thisnoiseresultsin non-physical local variations at the material points,… More >

  • Open Access

    ARTICLE

    Numerical Solution of Non-Isothermal Fluid Flows Using Local Radial Basis Functions (LRBF) Interpolation and a Velocity-Correction Method

    G. C. Bourantas1, E. D. Skouras2,3, V. C. Loukopoulos4, G. C. Nikiforidis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.64, No.2, pp. 187-212, 2010, DOI:10.3970/cmes.2010.064.187

    Abstract Meshfree point collocation method (MPCM) is developed, solving the velocity-vorticity formulation of Navier-Stokes equations, for two-dimensional, steady state incompressible viscous flow problems in the presence of heat transfer. Particular emphasis is placed on the application of the velocity-correction method, ensuring the continuity equation. The Gaussian Radial Basis Functions (GRBF) interpolation is employed to construct the shape functions in conjunction with the framework of the point collocation method. The cases of forced, natural and mixed convection in a 2D rectangular enclosure are examined. The accuracy and the stability of the proposed scheme are demonstrated through three representative, well known and established… More >

  • Open Access

    ABSTRACT

    Modeling the effect of earthquake, excavation and bolt reinforcement with extended DDA of meshless interpolations

    Yongzheng Ma, Hong Zheng

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.1, pp. 7-8, 2011, DOI:10.3970/icces.2011.019.007

    Abstract The traditional Discontinuous Deformation Analysis (DDA) method, like other Discrete Element Methods, is created to model the discrete block system. The extended DDA method based on meshless interpolations means utilizing meshless interpolations, usually the Moving Least-Squares interpolations, to present block displacement field. In the new extensions here, the effects of earthquake, excavation and bolt reinforcement on the assemblages of large blocks are modeled: for modeling earthquake, the initial acceleration value from earthquake at certain DDA time step can be interpolated from the earthquake acceleration vs. time curve; the modeling of excavation is by reversing in-situ stresses at excavation internal boundaries… More >

  • Open Access

    ABSTRACT

    Solving Partial Differential Equations With Point Collocation And One-Dimensional Integrated Interpolation Schemes

    N. Mai-Duy1, T. Tran-Cong1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.3, pp. 127-132, 2007, DOI:10.3970/icces.2007.003.127

    Abstract This lecture presents an overview of the Integral Collocation formulation for numerically solving partial differential equations (PDEs). However, due to space limitation, the paper only describes the latest development, namely schemes based only on one-dimensional (1D) integrated interpolation even in multi-dimensional problems. The proposed technique is examined with Chebyshev polynomials and radial basis functions (RBFs). The latter can be used in both regular and irregular domains. For both basis functions, the accuracy and convergence rates of the new technique are better than those of the differential formulation. More >

  • Open Access

    ABSTRACT

    A New Collocation Method for Motz's Problem

    Chein-Shan Liu1, Yung-Wei Chen2, Jiang-Ren Chang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.2, pp. 93-100, 2007, DOI:10.3970/icces.2007.003.093

    Abstract A new collocation method is developed here to solve the elliptic boundary value problems with singularities. Specifically, we consider the Motz problem as a test of the performance of the new method, which is found accurate and effective. More >

  • Open Access

    ARTICLE

    Local Integral Equations and two Meshless Polynomial Interpolations with Application to Potential Problems in Non-homogeneous Media

    V. Sladek1, J. Sladek1, M. Tanaka2

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.1, pp. 69-84, 2005, DOI:10.3970/cmes.2005.007.069

    Abstract An efficient numerical method is proposed for 2-d potential problems in anisotropic media with continuously variable material coefficients. The method is based on the local integral equations (utilizing a fundamental solution) and meshfree approximation of field variable. A lot of numerical experiments are carried out in order to study the numerical stability, accuracy, convergence and efficiency of several approaches utilizing various interpolations. More >

Displaying 31-40 on page 4 of 98. Per Page