Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (290)
  • Open Access

    ARTICLE

    Securing Cloud Computing from Flash Crowd Attack Using Ensemble Intrusion Detection System

    Turke Althobaiti1,2, Yousef Sanjalawe3,*, Naeem Ramzan4

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 453-469, 2023, DOI:10.32604/csse.2023.039207 - 26 May 2023

    Abstract Flash Crowd attacks are a form of Distributed Denial of Service (DDoS) attack that is becoming increasingly difficult to detect due to its ability to imitate normal user behavior in Cloud Computing (CC). Botnets are often used by attackers to perform a wide range of DDoS attacks. With advancements in technology, bots are now able to simulate DDoS attacks as flash crowd events, making them difficult to detect. When it comes to application layer DDoS attacks, the Flash Crowd attack that occurs during a Flash Event is viewed as the most intricate issue. This is… More >

  • Open Access

    ARTICLE

    New Denial of Service Attacks Detection Approach Using Hybridized Deep Neural Networks and Balanced Datasets

    Ouail Mjahed1,*, Salah El Hadaj1, El Mahdi El Guarmah1,2, Soukaina Mjahed1

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 757-775, 2023, DOI:10.32604/csse.2023.039111 - 26 May 2023

    Abstract Denial of Service (DoS/DDoS) intrusions are damaging cyber-attacks, and their identification is of great interest to the Intrusion Detection System (IDS). Existing IDS are mainly based on Machine Learning (ML) methods including Deep Neural Networks (DNN), but which are rarely hybridized with other techniques. The intrusion data used are generally imbalanced and contain multiple features. Thus, the proposed approach aims to use a DNN-based method to detect DoS/DDoS attacks using CICIDS2017, CSE-CICIDS2018 and CICDDoS 2019 datasets, according to the following key points. a) Three imbalanced CICIDS2017-2018-2019 datasets, including Benign and DoS/DDoS attack classes, are used.… More >

  • Open Access

    ARTICLE

    Adaptive Butterfly Optimization Algorithm (ABOA) Based Feature Selection and Deep Neural Network (DNN) for Detection of Distributed Denial-of-Service (DDoS) Attacks in Cloud

    S. Sureshkumar1,*, G .K. D. Prasanna Venkatesan2, R. Santhosh3

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1109-1123, 2023, DOI:10.32604/csse.2023.036267 - 26 May 2023

    Abstract Cloud computing technology provides flexible, on-demand, and completely controlled computing resources and services are highly desirable. Despite this, with its distributed and dynamic nature and shortcomings in virtualization deployment, the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties. The Intrusion Detection System (IDS) is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources. DDoS attacks are becoming more frequent and powerful, and their attack pathways are continually changing, which requiring the development of new detection methods. Here… More >

  • Open Access

    ARTICLE

    Mirai Botnet Attack Detection in Low-Scale Network Traffic

    Ebu Yusuf GÜVEN, Zeynep GÜRKAŞ-AYDIN*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 419-437, 2023, DOI:10.32604/iasc.2023.038043 - 29 April 2023

    Abstract The Internet of Things (IoT) has aided in the development of new products and services. Due to the heterogeneity of IoT items and networks, traditional techniques cannot identify network risks. Rule-based solutions make it challenging to secure and manage IoT devices and services due to their diversity. While the use of artificial intelligence eliminates the need to define rules, the training and retraining processes require additional processing power. This study proposes a methodology for analyzing constrained devices in IoT environments. We examined the relationship between different sized samples from the Kitsune dataset to simulate the… More >

  • Open Access

    ARTICLE

    An Efficient Approach Based on Remora Optimization Algorithm and Levy Flight for Intrusion Detection

    Abdullah Mujawib Alashjaee*

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 235-254, 2023, DOI:10.32604/iasc.2023.036247 - 29 April 2023

    Abstract With the recent increase in network attacks by threats, malware, and other sources, machine learning techniques have gained special attention for intrusion detection due to their ability to classify hundreds of features into normal system behavior or an attack attempt. However, feature selection is a vital preprocessing stage in machine learning approaches. This paper presents a novel feature selection-based approach, Remora Optimization Algorithm-Levy Flight (ROA-LF), to improve intrusion detection by boosting the ROA performance with LF. The developed ROA-LF is assessed using several evaluation measures on five publicly available datasets for intrusion detection: Knowledge discovery More >

  • Open Access

    ARTICLE

    Intrusion Detection System Through Deep Learning in Routing MANET Networks

    Zainab Ali Abbood1,2,*, Doğu Çağdaş Atilla3,4, Çağatay Aydin5

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 269-281, 2023, DOI:10.32604/iasc.2023.035276 - 29 April 2023

    Abstract Deep learning (DL) is a subdivision of machine learning (ML) that employs numerous algorithms, each of which provides various explanations of the data it consumes; mobile ad-hoc networks (MANET) are growing in prominence. For reasons including node mobility, due to MANET’s potential to provide small-cost solutions for real-world contact challenges, decentralized management, and restricted bandwidth, MANETs are more vulnerable to security threats. When protecting MANETs from attack, encryption and authentication schemes have their limits. However, deep learning (DL) approaches in intrusion detection systems (IDS) can adapt to the changing environment of MANETs and allow a… More >

  • Open Access

    ARTICLE

    Multi-Attack Intrusion Detection System for Software-Defined Internet of Things Network

    Tarcízio Ferrão1,*, Franklin Manene2, Adeyemi Abel Ajibesin3

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4985-5007, 2023, DOI:10.32604/cmc.2023.038276 - 29 April 2023

    Abstract Currently, the Internet of Things (IoT) is revolutionizing communication technology by facilitating the sharing of information between different physical devices connected to a network. To improve control, customization, flexibility, and reduce network maintenance costs, a new Software-Defined Network (SDN) technology must be used in this infrastructure. Despite the various advantages of combining SDN and IoT, this environment is more vulnerable to various attacks due to the centralization of control. Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service (DDoS) attacks, but they often lack mechanisms to mitigate their severity. This paper proposes… More >

  • Open Access

    ARTICLE

    Improved Monarchy Butterfly Optimization Algorithm (IMBO): Intrusion Detection Using Mapreduce Framework Based Optimized ANU-Net

    Kunda Suresh Babu, Yamarthi Narasimha Rao*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5887-5909, 2023, DOI:10.32604/cmc.2023.037486 - 29 April 2023

    Abstract The demand for cybersecurity is rising recently due to the rapid improvement of network technologies. As a primary defense mechanism, an intrusion detection system (IDS) was anticipated to adapt and secure computing infrastructures from the constantly evolving, sophisticated threat landscape. Recently, various deep learning methods have been put forth; however, these methods struggle to recognize all forms of assaults, especially infrequent attacks, because of network traffic imbalances and a shortage of aberrant traffic samples for model training. This work introduces deep learning (DL) based Attention based Nested U-Net (ANU-Net) for intrusion detection to address these… More >

  • Open Access

    ARTICLE

    Sea Turtle Foraging Optimization-Based Controller Placement with Blockchain-Assisted Intrusion Detection in Software-Defined Networks

    Sultan Alkhliwi*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4735-4752, 2023, DOI:10.32604/cmc.2023.037141 - 29 April 2023

    Abstract Software-defined networking (SDN) algorithms are gaining increasing interest and are making networks flexible and agile. The basic idea of SDN is to move the control planes to more than one server’s named controllers and limit the data planes to numerous sending network components, enabling flexible and dynamic network management. A distinctive characteristic of SDN is that it can logically centralize the control plane by utilizing many physical controllers. The deployment of the controller—that is, the controller placement problem (CPP)—becomes a vital model challenge. Through the advancements of blockchain technology, data integrity between nodes can be… More >

  • Open Access

    ARTICLE

    Improved Supervised and Unsupervised Metaheuristic-Based Approaches to Detect Intrusion in Various Datasets

    Ouail Mjahed1,*, Salah El Hadaj1, El Mahdi El Guarmah1,2, Soukaina Mjahed1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 265-298, 2023, DOI:10.32604/cmes.2023.027581 - 23 April 2023

    Abstract Due to the increasing number of cyber-attacks, the necessity to develop efficient intrusion detection systems (IDS) is more imperative than ever. In IDS research, the most effectively used methodology is based on supervised Neural Networks (NN) and unsupervised clustering, but there are few works dedicated to their hybridization with metaheuristic algorithms. As intrusion detection data usually contains several features, it is essential to select the best ones appropriately. Linear Discriminant Analysis (LDA) and t-statistic are considered as efficient conventional techniques to select the best features, but they have been little exploited in IDS design. Thus,… More >

Displaying 131-140 on page 14 of 290. Per Page