Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (538)
  • Open Access

    ARTICLE

    Biodegradation of Medicinal Plants Waste in an Anaerobic Digestion Reactor for Biogas Production

    Kabir Fardad1, Bahman Najafi1, Sina Faizollahzadeh Ardabili1, Amir Mosavi2,3, Shahaboddin Shamshirband,4,5,*, Timon Rabczuk2

    CMC-Computers, Materials & Continua, Vol.55, No.3, pp. 381-392, 2018, DOI: 10.3970/cmc.2018.01803

    Abstract Glycyrrhiza glabra, Mint, Cuminum cyminum, Lavender and Arctium medicinal are considered as edible plants with therapeutic properties and as medicinal plants in Iran. After extraction process of medicinal plants, residual wastes are not suitable for animal feed and are considered as waste and as an environmental threat. At present there is no proper management of waste of these plants and they are burned or buried. The present study discusses the possibility of biogas production from Glycyrrhiza Glabra Waste (GGW), Mentha Waste (MW), Cuminum Cyminum Waste (CCW), Lavender Waste (LW) and Arctium Waste (AW). 250 g… More >

  • Open Access

    ARTICLE

    An Abnormal Network Flow Feature Sequence Prediction Approach for DDoS Attacks Detection in Big Data Environment

    Jieren Cheng1,2, Ruomeng Xu1,*, Xiangyan Tang1, Victor S. Sheng3, Canting Cai1

    CMC-Computers, Materials & Continua, Vol.55, No.1, pp. 95-119, 2018, DOI:10.3970/cmc.2018.055.095

    Abstract Distributed denial-of-service (DDoS) is a rapidly growing problem with the fast development of the Internet. There are multitude DDoS detection approaches, however, three major problems about DDoS attack detection appear in the big data environment. Firstly, to shorten the respond time of the DDoS attack detector; secondly, to reduce the required compute resources; lastly, to achieve a high detection rate with low false alarm rate. In the paper, we propose an abnormal network flow feature sequence prediction approach which could fit to be used as a DDoS attack detector in the big data environment and… More >

  • Open Access

    ARTICLE

    Time Optimization of Multiple Knowledge Transfers in the Big Data Environment

    Chuanrong Wu1, *, Evgeniya Zapevalova1, Yingwu Chen2, Feng Li3

    CMC-Computers, Materials & Continua, Vol.54, No.3, pp. 269-285, 2018, DOI:10.3970/cmc.2018.054.269

    Abstract In the big data environment, enterprises must constantly assimilate big data knowledge and private knowledge by multiple knowledge transfers to maintain their competitive advantage. The optimal time of knowledge transfer is one of the most important aspects to improve knowledge transfer efficiency. Based on the analysis of the complex characteristics of knowledge transfer in the big data environment, multiple knowledge transfers can be divided into two categories. One is the simultaneous transfer of various types of knowledge, and the other one is multiple knowledge transfers at different time points. Taking into consideration the influential factors, More >

  • Open Access

    ARTICLE

    Buckling and Postbuckling Behavior of Functionally Graded Nanotube-Reinforced Composite Plates in Thermal Environments

    Hui- Shen1,2, Zheng Hong Zhu3

    CMC-Computers, Materials & Continua, Vol.18, No.2, pp. 155-182, 2010, DOI:10.3970/cmc.2010.018.155

    Abstract This paper investigates the buckling and postbuckling of simply supported, nanocomposite plates with functionally graded nanotube reinforcements subjected to uniaxial compression in thermal environments. The nanocomposite plates are assumed to be functionally graded in the thickness direction using single-walled carbon nanotubes (SWCNTs) serving as reinforcements and the plates' effective material properties are estimated through a micromechanical model. The higher order shear deformation plate theory with a von Kármán-type of kinematic nonlinearity is used to model the composite plates and a two-step perturbation technique is performed to determine the buckling loads and postbuckling equilibrium paths. Numerical… More >

  • Open Access

    ARTICLE

    Lattice Dynamics and Second and Third Order Elastic Constants of Iron at Elevated Pressures

    Hieu H. Pham1, Tahir Ça ˇgın1

    CMC-Computers, Materials & Continua, Vol.16, No.2, pp. 175-194, 2010, DOI:10.3970/cmc.2010.016.175

    Abstract We analyze the lattice dynamics of Fe in different crystal phases (bcc, fcc and hcp) by using density-functional theory. The study on equations of states indicates that bcc Fe is more stable than fcc and hcp Fe at low pressures. However, dynamical instabilities in lattice vibrations of bcc Fe predict a phase transformation from bcc to hcp at higher pressures. We reported a complete set of second-order and third-order elastic constants of Fe in these three phases. We observed a linear variation in the values of second order elastic constant as a function of increased More >

  • Open Access

    ARTICLE

    A Molecular Dynamics Study of Irradiation Induced Cascades in Iron Containing Hydrogen

    E. Hayward1, C. Deo1

    CMC-Computers, Materials & Continua, Vol.16, No.2, pp. 101-116, 2010, DOI:10.3970/cmc.2010.016.101

    Abstract Damage cascades representative of those that would be induced by neutron irradiation have been simulated in systems of pure iron and iron containing 0.01 at.% hydrogen. Results from molecular dynamics simulations using three different embedded-atom method (EAM) type potentials are compared for primary knock-on atom energies of 5, 10, and 20 keV to assess the effect of hydrogen on the primary damage state. We examine the influence of hydrogen on the primary damage state due to a single radiation cascade. These results can serve as an atomistic database for methods and simulations for long time More >

  • Open Access

    ARTICLE

    Convergence Properties of Genetic Algorithmsin a Wide Variety of Noisy Environments

    TakehikoNakama1

    CMC-Computers, Materials & Continua, Vol.14, No.1, pp. 35-60, 2009, DOI:10.3970/cmc.2009.014.035

    Abstract Random noise perturbs objective functions in practical optimization problems, and genetic algorithms (GAs) have been proposed as an effective optimization tool for dealing with noisy objective functions. In this paper, we investigate GAs in a variety of noisy environments where fitness perturbation can occur in any form-for example, fitness evaluations can be concurrently disturbed by additive and multiplicative noise. We reveal the convergence properties of GAs by constructing and analyzing a Markov chain that explicitly models the evolution of the algorithms in noisy environments. We compute the one-step transition probabilities of the Markov chain and… More >

  • Open Access

    ARTICLE

    Benchmark Solutions for Three-Dimensional Transient Heat Transfer in Two-Dimensional Environments Via the Time Fourier Transform

    Julieta António1,2, António Tadeu2, Luís Godinho2, Nuno Simões2

    CMC-Computers, Materials & Continua, Vol.2, No.1, pp. 1-12, 2005, DOI:10.3970/cmc.2005.002.001

    Abstract The evaluation of heat propagation in the time domain generated by transient heat sources placed in the presence of three-dimensional media requires the use of computationally demanding numerical schemes. The implementation of numerical 3D solutions may benefit from the existence of benchmark solutions to test the accuracy of approximate schemes.
    With this purpose inmind, this article presents analyticalnumerical solutions to evaluate the heat-field elicited by monopole heat sources in the presence of three different inclusions, namely, a cylindrical circular solid inclusion, a cylindrical circular cavity with null fluxes and a cavity with null temperatures prescribed along… More >

Displaying 531-540 on page 54 of 538. Per Page