Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Resolving Domain Integral Issues in Isogeometric Boundary Element Methods via Radial Integration: A Study of Thermoelastic Analysis

    Shige Wang1, Zhongwang Wang1, Leilei Chen1, Haojie Lian2,3,*, Xuan Peng4, Haibo Chen5

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 585-604, 2020, DOI:10.32604/cmes.2020.09904 - 20 July 2020

    Abstract The paper applied the isogeometric boundary element method (IGABEM) to thermoelastic problems. The Non-Uniform Rational B-splines (NURBS) used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation. Due to the existence of thermal stress, the domain integral term appears in the boundary integral equation. We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral. In this way, IGABEM can maintain its advantages in dimensionality reduction and more importantly, seamless integration of CAD and numerical analysis based on boundary More >

  • Open Access

    ARTICLE

    Analysis of Unsteady Heat Transfer Problems with Complex Geometries Using Isogeometric Boundary Element Method

    Weihua Fang1, Zhilin An2, Tiantang Yu2, *, Tinh Quoc Bui3, 4, *

    CMC-Computers, Materials & Continua, Vol.62, No.2, pp. 929-962, 2020, DOI:10.32604/cmc.2020.05022

    Abstract Numerical analysis of unsteady heat transfer problems with complex geometries by the isogeometric boundary element method (IGABEM) is presented. The IGABEM possesses many desirable merits and features, for instance, (a) exactly represented arbitrarily complex geometries, and higher-order continuity due to nonuniform rational B-splines (NURBS) shape functions; (b) using NURBS for both field approximation and geometric description; (c) directly utilizing geometry data from computer-aided design (CAD); and (d) only boundary discretization. The formulation of IGABEM for unsteady heat transfer is derived. The domain discretization in terms of IGABEM for unsteady heat transfer is required as that More >

  • Open Access

    ARTICLE

    An Improved Isogeometric Boundary Element Method Approach in Two Dimensional Elastostatics

    Vincenzo Mallardo1, Eugenio Ruocco2

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.5, pp. 373-391, 2014, DOI:10.3970/cmes.2014.102.373

    Abstract The NURBS based isogeometric analysis offers a novel integration between the CAD and the numerical structural analysis codes due to its superior capacity to describe accurately any complex geometry. Since it was proposed in 2005, the approach has attracted rapidly growing research interests and wide applications in the Finite Element context. Only recently, in 2012, it was successfully tested together with the Boundary Element Method. The combination of the isogeometric approach and the Boundary Element Method is efficient since both the NURBS geometrical representation and the Boundary Element Method deal with quantities entirely on the More >

Displaying 11-20 on page 2 of 13. Per Page