Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (227)
  • Open Access

    ARTICLE

    Multi-Objective Enhanced Cheetah Optimizer for Joint Optimization of Computation Offloading and Task Scheduling in Fog Computing

    Ahmad Zia1, Nazia Azim2, Bekarystankyzy Akbayan3, Khalid J. Alzahrani4, Ateeq Ur Rehman5,*, Faheem Ullah Khan6, Nouf Al-Kahtani7, Hend Khalid Alkahtani8,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073818 - 12 January 2026

    Abstract The cloud-fog computing paradigm has emerged as a novel hybrid computing model that integrates computational resources at both fog nodes and cloud servers to address the challenges posed by dynamic and heterogeneous computing networks. Finding an optimal computational resource for task offloading and then executing efficiently is a critical issue to achieve a trade-off between energy consumption and transmission delay. In this network, the task processed at fog nodes reduces transmission delay. Still, it increases energy consumption, while routing tasks to the cloud server saves energy at the cost of higher communication delay. Moreover, the… More >

  • Open Access

    ARTICLE

    Research on Vehicle Joint Radar Communication Resource Optimization Method Based on GNN-DRL

    Zeyu Chen1, Jian Sun2,*, Zhengda Huan1, Ziyi Zhang1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.071182 - 09 December 2025

    Abstract To address the issues of poor adaptability in resource allocation and low multi-agent cooperation efficiency in Joint Radar and Communication (JRC) systems under dynamic environments, an intelligent optimization framework integrating Deep Reinforcement Learning (DRL) and Graph Neural Network (GNN) is proposed. This framework models resource allocation as a Partially Observable Markov Game (POMG), designs a weighted reward function to balance radar and communication efficiencies, adopts the Multi-Agent Proximal Policy Optimization (MAPPO) framework, and integrates Graph Convolutional Networks (GCN) and Graph Sample and Aggregate (GraphSAGE) to optimize information interaction. Simulations show that, compared with traditional methods More >

  • Open Access

    ARTICLE

    A Joint Optimization Model for Device Selection and Power Allocation under Dynamic Uncertain Environments

    Bohui Li1, Bin Wang1, Linjie Wu1, Xingjuan Cai1,*, Maoqing Zhang2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-28, 2026, DOI:10.32604/cmc.2025.070592 - 09 December 2025

    Abstract Federated Learning (FL) provides an effective framework for efficient processing in vehicular edge computing. However, the dynamic and uncertain communication environment, along with the performance variations of vehicular devices, affect the distribution and uploading processes of model parameters. In FL-assisted Internet of Vehicles (IoV) scenarios, challenges such as data heterogeneity, limited device resources, and unstable communication environments become increasingly prominent. These issues necessitate intelligent vehicle selection schemes to enhance training efficiency. Given this context, we propose a new scenario involving FL-assisted IoV systems under dynamic and uncertain communication conditions, and develop a dynamic interval multi-objective More >

  • Open Access

    ARTICLE

    Recurrent MAPPO for Joint UAV Trajectory and Traffic Offloading in Space-Air-Ground Integrated Networks

    Zheyuan Jia, Fenglin Jin*, Jun Xie, Yuan He

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.069128 - 10 November 2025

    Abstract This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks (SAGIN) through a novel Recursive Multi-Agent Proximal Policy Optimization (RMAPPO) algorithm. The exponential growth of mobile devices and data traffic has substantially increased network congestion, particularly in urban areas and regions with limited terrestrial infrastructure. Our approach jointly optimizes unmanned aerial vehicle (UAV) trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput, minimize energy consumption, and maintain equitable resource distribution. The proposed RMAPPO framework incorporates recurrent neural networks (RNNs) to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent More >

  • Open Access

    ARTICLE

    Face-Pedestrian Joint Feature Modeling with Cross-Category Dynamic Matching for Occlusion-Robust Multi-Object Tracking

    Qin Hu, Hongshan Kong*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-31, 2026, DOI:10.32604/cmc.2025.069078 - 10 November 2025

    Abstract To address the issues of frequent identity switches (IDs) and degraded identification accuracy in multi object tracking (MOT) under complex occlusion scenarios, this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling. By constructing a joint tracking model centered on “intra-class independent tracking + cross-category dynamic binding”, designing a multi-modal matching metric with spatio-temporal and appearance constraints, and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy, this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion, cross-camera tracking, and crowded environments. Experiments… More >

  • Open Access

    REVIEW

    Finger-Joint Lumber: A Systematic Literature Review and a Global Industry Survey on this Ecofriendly Structural Building Material

    Victor De Araujo1,2,3,*, Pedro Jardim3,4, Poliana Pessôa3, Juliano Vasconcelos2,5, Matheus Souza6, José Garcia7, Jozef Švajlenka8, André Christoforo3,1

    Journal of Renewable Materials, Vol.13, No.12, pp. 2479-2524, 2025, DOI:10.32604/jrm.2025.02025-0127 - 23 December 2025

    Abstract Finger-joint lumber is a sustainable building product commercialized as a structural solution for beams, pillars and other thin flat load-bearing elements. This study aims to study finger-joint lumber and its industry to promote this engineered wood product. The first research stage assessed the collection of publications on finger-joint lumber available globally, in which a structured protocol was developed to prospect studies based on two complementary methodologies: PRISMA 2020 using Scopus and Web of Science databases, and Snowball using both forward and backward models to complete with additional literature. The second research stage assessed finger-joint lumber… More >

  • Open Access

    ARTICLE

    Fatigue Assessment of Large-Diameter Stiffened Tubular Welded Joints Using Effective Notch Strain and Structural Strain Approach

    Dan Jiao1,2, Yan Dong1,2,*, Hao Xie3, Yordan Garbatov4,*, Jiancheng Liu5, Hui Zhang5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3197-3216, 2025, DOI:10.32604/cmes.2025.074239 - 23 December 2025

    Abstract Floating offshore wind turbine platforms typically use stiffened tubular joints at the connections between columns and braces. These joints are prone to fatigue due to complex weld geometries and the additional stress concentrations caused by the stiffeners. Existing hot-spot stress approaches may be inadequate for analysing these joints because they do not simultaneously address weld-toe and weld-root failures. To address these limitations, this study evaluates the fatigue strength of stiffened tubular joints using the effective notch strain approach and the structural strain approach. Both methods account for fatigue at the weld toe and weld root… More >

  • Open Access

    ARTICLE

    Joint Estimation of Elevation and Azimuth Angles with Triple-Parallel ULAs Using Metaheuristic and Direct Search Methods

    Fawad Zaman1,#, Adeel Iqbal2,#, Bakhtiar Ali1, Abdul Khader Jilani Saudagar3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2535-2550, 2025, DOI:10.32604/cmes.2025.072638 - 26 November 2025

    Abstract Accurate estimation of the Direction-of-Arrival (DoA) of incident plane waves is essential for modern wireless communication, radar, sonar, and localization systems. Precise DoA information enables adaptive beamforming, spatial filtering, and interference mitigation by steering antenna array beams toward desired sources while suppressing unwanted signals. Traditional one-dimensional Uniform Linear Arrays (ULAs) are limited to elevation angle estimation due to geometric constraints, typically within the range [0, π]. To capture full spatial characteristics in environments with multipath and angular spread, joint estimation of both elevation and azimuth angles becomes necessary. However, existing 2D and 3D array geometries… More >

  • Open Access

    ARTICLE

    A Computational Modeling Approach for Joint Calibration of Low-Deviation Surgical Instruments

    Bo Yang1,2, Yu Zhou3, Jiawei Tian4,*, Xiang Zhang2, Fupei Guo2, Shan Liu5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2253-2276, 2025, DOI:10.32604/cmes.2025.072031 - 26 November 2025

    Abstract Accurate calibration of surgical instruments and ultrasound probes is essential for achieving high precision in image guided minimally invasive procedures. However, existing methods typically treat the calibration of the needle tip and the ultrasound probe as two independent processes, lacking an integrated calibration mechanism, which often leads to cumulative errors and reduced spatial consistency. To address this challenge, we propose a joint calibration model that unifies the calibration of the surgical needle tip and the ultrasound probe within a single coordinate system. The method formulates the calibration process through a series of mathematical models and… More >

  • Open Access

    ARTICLE

    Estimation of a Line Heat Source Using an Adjoint Free Gradient Based Inverse Analysis

    Farzad Mohebbi*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1417-1441, 2025, DOI:10.32604/fhmt.2025.069024 - 31 October 2025

    Abstract An inverse analysis is presented to estimate line heat source in two-dimensional steady-state and transient heat transfer problems. A constant heat source is considered in the steady-state heat transfer problem (a parameter estimation problem) and a time-varying heat source is considered in the transient heat transfer problem (a function estimation problem). Since a general irregular 2D heat conducting body is considered, a body-fitted grid generation is used to mesh the domain. Then governing equations and associated boundary and initial conditions are transformed from the physical domain to the computational domain and finite difference method is… More >

Displaying 1-10 on page 1 of 227. Per Page