Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (88)
  • Open Access

    ARTICLE

    Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm

    Binjiang Hu1,*, Yihua Zhu2, Liang Tu1,2, Zun Ma3, Xian Meng3, Kewei Xu3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069777 - 27 December 2025

    Abstract This paper proposes an equivalent modeling method for photovoltaic (PV) power stations via a particle swarm optimization (PSO) K-means clustering (KMC) algorithm with passive filter parameter clustering to address the complexities, simulation time cost and convergence problems of detailed PV power station models. First, the amplitude–frequency curves of different filter parameters are analyzed. Based on the results, a grouping parameter set for characterizing the external filter characteristics is established. These parameters are further defined as clustering parameters. A single PV inverter model is then established as a prerequisite foundation. The proposed equivalent method combines the… More >

  • Open Access

    ARTICLE

    HCF-MFGB: Hybrid Collaborative Filtering Based on Matrix Factorization and Gradient Boosting

    Salahudin Robo1,2, Triyanna Widiyaningtyas1,*, Wahyu Sakti Gunawan Irianto1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.073011 - 09 December 2025

    Abstract Recommendation systems are an integral and indispensable part of every digital platform, as they can suggest content or items to users based on their respective needs. Collaborative filtering is a technique often used in various studies, which produces recommendations by analyzing similarities between users and items based on their behavior. Although often used, traditional collaborative filtering techniques still face the main challenge of sparsity. Sparsity problems occur when the data in the system is sparse, meaning that only a portion of users provide feedback on some items, resulting in inaccurate recommendations generated by the system.… More >

  • Open Access

    ARTICLE

    When Large Language Models and Machine Learning Meet Multi-Criteria Decision Making: Fully Integrated Approach for Social Media Moderation

    Noreen Fuentes1, Janeth Ugang1, Narcisan Galamiton1, Suzette Bacus1, Samantha Shane Evangelista2, Fatima Maturan2, Lanndon Ocampo2,3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.068104 - 10 November 2025

    Abstract This study demonstrates a novel integration of large language models, machine learning, and multi-criteria decision-making to investigate self-moderation in small online communities, a topic under-explored compared to user behavior and platform-driven moderation on social media. The proposed methodological framework (1) utilizes large language models for social media post analysis and categorization, (2) employs k-means clustering for content characterization, and (3) incorporates the TODIM (Tomada de Decisão Interativa Multicritério) method to determine moderation strategies based on expert judgments. In general, the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation… More >

  • Open Access

    ARTICLE

    Cluster Overlap as Objective Function

    Pasi Fränti1,*, Claude Cariou2, Qinpei Zhao3

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4687-4704, 2025, DOI:10.32604/cmc.2025.066534 - 23 October 2025

    Abstract K-means uses the sum-of-squared error as the objective function to minimize within-cluster distances. We show that, as a consequence, it also maximizes between-cluster variances. This means that the two measures do not provide complementary information and that using only one is enough. Based on this property, we propose a new objective function called cluster overlap, which is measured intuitively as the proportion of points shared between the clusters. We adopt the new function within k-means and present an algorithm called overlap k-means. It is an alternative way to design a k-means algorithm. A localized variant is also More >

  • Open Access

    ARTICLE

    Enhancing Heart Sound Classification with Iterative Clustering and Silhouette Analysis: An Effective Preprocessing Selective Method to Diagnose Rare and Difficult Cardiovascular Cases

    Sami Alrabie#,*, Ahmed Barnawi#

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2481-2519, 2025, DOI:10.32604/cmes.2025.067977 - 31 August 2025

    Abstract In the effort to enhance cardiovascular diagnostics, deep learning-based heart sound classification presents a promising solution. This research introduces a novel preprocessing method: iterative k-means clustering combined with silhouette score analysis, aimed at downsampling. This approach ensures optimal cluster formation and improves data quality for deep learning models. The process involves applying k-means clustering to the dataset, calculating the average silhouette score for each cluster, and selecting the cluster with the highest score. We evaluated this method using 10-fold cross-validation across various transfer learning models from different families and architectures. The evaluation was conducted on… More >

  • Open Access

    ARTICLE

    Optimized Cardiovascular Disease Prediction Using Clustered Butterfly Algorithm

    Kamepalli S. L. Prasanna1, Vijaya J2, Parvathaneni Naga Srinivasu1, Babar Shah3, Farman Ali4,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1603-1630, 2025, DOI:10.32604/cmc.2025.068707 - 29 August 2025

    Abstract Cardiovascular disease prediction is a significant area of research in healthcare management systems (HMS). We will only be able to reduce the number of deaths if we anticipate cardiac problems in advance. The existing heart disease detection systems using machine learning have not yet produced sufficient results due to the reliance on available data. We present Clustered Butterfly Optimization Techniques (RoughK-means+BOA) as a new hybrid method for predicting heart disease. This method comprises two phases: clustering data using Roughk-means (RKM) and data analysis using the butterfly optimization algorithm (BOA). The benchmark dataset from the UCI More >

  • Open Access

    ARTICLE

    Approximate Homomorphic Encryption for MLaaS by CKKS with Operation-Error-Bound

    Ray-I Chang1, Chia-Hui Wang2,*, Yen-Ting Chang1, Lien-Chen Wei2

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 503-518, 2025, DOI:10.32604/cmc.2025.068516 - 29 August 2025

    Abstract As data analysis often incurs significant communication and computational costs, these tasks are increasingly outsourced to cloud computing platforms. However, this introduces privacy concerns, as sensitive data must be transmitted to and processed by untrusted parties. To address this, fully homomorphic encryption (FHE) has emerged as a promising solution for privacy-preserving Machine-Learning-as-a-Service (MLaaS), enabling computation on encrypted data without revealing the plaintext. Nevertheless, FHE remains computationally expensive. As a result, approximate homomorphic encryption (AHE) schemes, such as CKKS, have attracted attention due to their efficiency. In our previous work, we proposed RP-OKC, a CKKS-based clustering… More >

  • Open Access

    ARTICLE

    Addressing Modern Cybersecurity Challenges: A Hybrid Machine Learning and Deep Learning Approach for Network Intrusion Detection

    Khadija Bouzaachane1,*, El Mahdi El Guarmah2, Abdullah M. Alnajim3, Sheroz Khan4

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2391-2410, 2025, DOI:10.32604/cmc.2025.065031 - 03 July 2025

    Abstract The rapid increase in the number of Internet of Things (IoT) devices, coupled with a rise in sophisticated cyberattacks, demands robust intrusion detection systems. This study presents a holistic, intelligent intrusion detection system. It uses a combined method that integrates machine learning (ML) and deep learning (DL) techniques to improve the protection of contemporary information technology (IT) systems. Unlike traditional signature-based or single-model methods, this system integrates the strengths of ensemble learning for binary classification and deep learning for multi-class classification. This combination provides a more nuanced and adaptable defense. The research utilizes the NF-UQ-NIDS-v2… More >

  • Open Access

    ARTICLE

    Machine Learning for QoS Optimization and Energy-Efficient in Routing Clustering Wireless Sensors

    Rahma Gantassi, Zaki Masood, Yonghoon Choi*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 327-343, 2025, DOI:10.32604/cmc.2024.058143 - 03 January 2025

    Abstract Wireless sensor network (WSN) technologies have advanced significantly in recent years. Within WSNs, machine learning algorithms are crucial in selecting cluster heads (CHs) based on various quality of service (QoS) metrics. This paper proposes a new clustering routing protocol employing the Traveling Salesman Problem (TSP) to locate the optimal path traversed by the Mobile Data Collector (MDC), in terms of energy and QoS efficiency. To be more specific, to minimize energy consumption in the CH election stage, we have developed the M-T protocol using the K-Means and the grid clustering algorithms. In addition, to improve More >

  • Open Access

    ARTICLE

    DKP-SLAM: A Visual SLAM for Dynamic Indoor Scenes Based on Object Detection and Region Probability

    Menglin Yin1, Yong Qin1,2,3,4,*, Jiansheng Peng1,2,3,4

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1329-1347, 2025, DOI:10.32604/cmc.2024.057460 - 03 January 2025

    Abstract In dynamic scenarios, visual simultaneous localization and mapping (SLAM) algorithms often incorrectly incorporate dynamic points during camera pose computation, leading to reduced accuracy and robustness. This paper presents a dynamic SLAM algorithm that leverages object detection and regional dynamic probability. Firstly, a parallel thread employs the YOLOX object detection model to gather 2D semantic information and compensate for missed detections. Next, an improved K-means++ clustering algorithm clusters bounding box regions, adaptively determining the threshold for extracting dynamic object contours as dynamic points change. This process divides the image into low dynamic, suspicious dynamic, and high More >

Displaying 1-10 on page 1 of 88. Per Page