Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (33)
  • Open Access

    ARTICLE

    Combining Deep Learning with Knowledge Graph for Design Knowledge Acquisition in Conceptual Product Design

    Yuexin Huang1,2, Suihuai Yu1, Jianjie Chu1,*, Zhaojing Su1,3, Yangfan Cong1, Hanyu Wang1, Hao Fan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 167-200, 2024, DOI:10.32604/cmes.2023.028268

    Abstract The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design. This study proposes a novel method for acquiring design knowledge by combining deep learning with knowledge graph. Specifically, the design knowledge acquisition method utilises the knowledge extraction model to extract design-related entities and relations from fragmentary data, and further constructs the knowledge graph to support design knowledge acquisition for conceptual product design. Moreover, the knowledge extraction model introduces ALBERT to solve memory limitation and communication overhead in the entity extraction module, and uses multi-granularity information to overcome segmentation errors and polysemy ambiguity… More >

  • Open Access

    ARTICLE

    Multi-Domain Malicious Behavior Knowledge Base Framework for Multi-Type DDoS Behavior Detection

    Ouyang Liu, Kun Li*, Ziwei Yin, Deyun Gao, Huachun Zhou

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2955-2977, 2023, DOI:10.32604/iasc.2023.039995

    Abstract Due to the many types of distributed denial-of-service attacks (DDoS) attacks and the large amount of data generated, it becomes a challenge to manage and apply the malicious behavior knowledge generated by DDoS attacks. We propose a malicious behavior knowledge base framework for DDoS attacks, which completes the construction and application of a multi-domain malicious behavior knowledge base. First, we collected malicious behavior traffic generated by five mainstream DDoS attacks. At the same time, we completed the knowledge collection mechanism through data pre-processing and dataset design. Then, we designed a malicious behavior category graph and malicious behavior structure graph for… More >

  • Open Access

    ARTICLE

    Construction Method of Equipment Defect Knowledge Graph in IoT

    Huafei Yang1, Wenqing Yang1, Nan Zhang1, Shanming Wei2,*, Yingnan Shang1

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2745-2765, 2023, DOI:10.32604/iasc.2023.036614

    Abstract Equipment defect detection is essential to the security and stability of power grid networking operations. Besides the status of the power grid itself, environmental information is also necessary for equipment defect detection. At the same time, different types of intelligent sensors can monitor environmental information, such as temperature, humidity, dust, etc. Therefore, we apply the Internet of Things (IoT) technology to monitor the related environment and pervasive interconnections to diverse physical objects. However, the data related to device defects in the existing Internet of Things are complex and lack uniform association hence building a knowledge graph is proposed to solve… More >

  • Open Access

    ARTICLE

    Design and Implementation of Police Equipment Knowledge Query System

    Chenxi Yu, Xin Li*

    Journal of Quantum Computing, Vol.4, No.2, pp. 63-74, 2022, DOI:10.32604/jqc.2022.027715

    Abstract In the field of public security, the standardized use of police equipment can better assist the public security police in performing their duties. With the advancement of science and technology of the times, police equipment is also constantly developing, and more and more new types of police equipment have appeared. Nowadays, there are a large number and variety of police equipment, and public security police are facing the challenge of mastering and updating equipment knowledge. This article builds a knowledge base of police equipment based on the knowledge of opening source data on the Internet, uses a variety of databases… More >

  • Open Access

    ARTICLE

    A Weakly-Supervised Method for Named Entity Recognition of Agricultural Knowledge Graph

    Ling Wang, Jingchi Jiang*, Jingwen Song, Jie Liu

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 833-848, 2023, DOI:10.32604/iasc.2023.036402

    Abstract It is significant for agricultural intelligent knowledge services using knowledge graph technology to integrate multi-source heterogeneous crop and pest data and fully mine the knowledge hidden in the text. However, only some labeled data for agricultural knowledge graph domain training are available. Furthermore, labeling is costly due to the need for more data openness and standardization. This paper proposes a novel model using knowledge distillation for a weakly supervised entity recognition in ontology construction. Knowledge distillation between the target and source data domain is performed, where Bi-LSTM and CRF models are constructed for entity recognition. The experimental result is shown… More >

  • Open Access

    ARTICLE

    Code Reviewer Intelligent Prediction in Open Source Industrial Software Project

    Zhifang Liao1, Bolin Zhang1, Xuechun Huang1, Song Yu1,*, Yan Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 687-704, 2023, DOI:10.32604/cmes.2023.027466

    Abstract Currently, open-source software is gradually being integrated into industrial software, while industry protocols in industrial software are also gradually transferred to open-source community development. Industrial protocol standardization organizations are confronted with fragmented and numerous code PR (Pull Request) and informal proposals, and different workflows will lead to increased operating costs. The open-source community maintenance team needs software that is more intelligent to guide the identification and classification of these issues. To solve the above problems, this paper proposes a PR review prediction model based on multi-dimensional features. We extract 43 features of PR and divide them into five dimensions: contributor,… More >

  • Open Access

    ARTICLE

    Critical Relation Path Aggregation-Based Industrial Control Component Exploitable Vulnerability Reasoning

    Zibo Wang1,3, Chaobin Huo2, Yaofang Zhang1,3, Shengtao Cheng1,3, Yilu Chen1,3, Xiaojie Wei5, Chao Li4, Bailing Wang1,3,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2957-2979, 2023, DOI:10.32604/cmc.2023.035694

    Abstract With the growing discovery of exposed vulnerabilities in the Industrial Control Components (ICCs), identification of the exploitable ones is urgent for Industrial Control System (ICS) administrators to proactively forecast potential threats. However, it is not a trivial task due to the complexity of the multi-source heterogeneous data and the lack of automatic analysis methods. To address these challenges, we propose an exploitability reasoning method based on the ICC-Vulnerability Knowledge Graph (KG) in which relation paths contain abundant potential evidence to support the reasoning. The reasoning task in this work refers to determining whether a specific relation is valid between an… More >

  • Open Access

    ARTICLE

    DCRL-KG: Distributed Multi-Modal Knowledge Graph Retrieval Platform Based on Collaborative Representation Learning

    Leilei Li1, Yansheng Fu2, Dongjie Zhu2,*, Xiaofang Li3, Yundong Sun2, Jianrui Ding2, Mingrui Wu2, Ning Cao4,*, Russell Higgs5

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3295-3307, 2023, DOI:10.32604/iasc.2023.035257

    Abstract The knowledge graph with relational abundant information has been widely used as the basic data support for the retrieval platforms. Image and text descriptions added to the knowledge graph enrich the node information, which accounts for the advantage of the multi-modal knowledge graph. In the field of cross-modal retrieval platforms, multi-modal knowledge graphs can help to improve retrieval accuracy and efficiency because of the abundant relational information provided by knowledge graphs. The representation learning method is significant to the application of multi-modal knowledge graphs. This paper proposes a distributed collaborative vector retrieval platform (DCRL-KG) using the multimodal knowledge graph VisualSem… More >

  • Open Access

    ARTICLE

    Topic Controlled Steganography via Graph-to-Text Generation

    Bowen Sun1, Yamin Li1,2,3,*, Jun Zhang1, Honghong Xu1, Xiaoqiang Ma4, Ping Xia2,3,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 157-176, 2023, DOI:10.32604/cmes.2023.025082

    Abstract Generation-based linguistic steganography is a popular research area of information hiding. The text generative steganographic method based on conditional probability coding is the direction that researchers have recently paid attention to. However, in the course of our experiment, we found that the secret information hiding in the text tends to destroy the statistical distribution characteristics of the original text, which indicates that this method has the problem of the obvious reduction of text quality when the embedding rate increases, and that the topic of generated texts is uncontrollable, so there is still room for improvement in concealment. In this paper,… More >

  • Open Access

    ARTICLE

    Knowledge Graph Representation Learning Based on Automatic Network Search for Link Prediction

    Zefeng Gu, Hua Chen*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2497-2514, 2023, DOI:10.32604/cmes.2023.024332

    Abstract Link prediction, also known as Knowledge Graph Completion (KGC), is the common task in Knowledge Graphs (KGs) to predict missing connections between entities. Most existing methods focus on designing shallow, scalable models, which have less expressive than deep, multi-layer models. Furthermore, most operations like addition, matrix multiplications or factorization are handcrafted based on a few known relation patterns in several well-known datasets, such as FB15k, WN18, etc. However, due to the diversity and complex nature of real-world data distribution, it is inherently difficult to preset all latent patterns. To address this issue, we propose KGE-ANS, a novel knowledge graph embedding… More >

Displaying 1-10 on page 1 of 33. Per Page