Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Gate-Attention and Dual-End Enhancement Mechanism for Multi-Label Text Classification

    Jieren Cheng1,2, Xiaolong Chen1,*, Wenghang Xu3, Shuai Hua3, Zhu Tang1, Victor S. Sheng4

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1779-1793, 2023, DOI:10.32604/cmc.2023.042980

    Abstract In the realm of Multi-Label Text Classification (MLTC), the dual challenges of extracting rich semantic features from text and discerning inter-label relationships have spurred innovative approaches. Many studies in semantic feature extraction have turned to external knowledge to augment the model’s grasp of textual content, often overlooking intrinsic textual cues such as label statistical features. In contrast, these endogenous insights naturally align with the classification task. In our paper, to complement this focus on intrinsic knowledge, we introduce a novel Gate-Attention mechanism. This mechanism adeptly integrates statistical features from the text itself into the semantic fabric, enhancing the model’s capacity… More >

  • Open Access

    ARTICLE

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

    Qiankun Zuo1,4, Junhua Hu2, Yudong Zhang3,*, Junren Pan4, Changhong Jing4, Xuhang Chen5, Xiaobo Meng6, Jin Hong7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2129-2147, 2023, DOI:10.32604/cmes.2023.028732

    Abstract The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challenging to access considerable amounts of brain functional network data, which hinders the widespread application of data-driven models in dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset, improving the dementia diagnosis accuracy of data-driven models. Specifically, the label distribution… More > Graphic Abstract

    Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis

Displaying 1-10 on page 1 of 2. Per Page