Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Language-Independent Text Tokenization Using Unsupervised Deep Learning

    Hanan A. Hosni Mahmoud1, Alaaeldin M. Hafez2, Eatedal Alabdulkreem1,*

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 321-334, 2023, DOI:10.32604/iasc.2023.026235

    Abstract Languages–independent text tokenization can aid in classification of languages with few sources. There is a global research effort to generate text classification for any language. Human text classification is a slow procedure. Consequently, the text summary generation of different languages, using machine text classification, has been considered in recent years. There is no research on the machine text classification for many languages such as Czech, Rome, Urdu. This research proposes a cross-language text tokenization model using a Transformer technique. The proposed Transformer employs an encoder that has ten layers with self-attention encoding and a feedforward More >

Displaying 1-10 on page 1 of 1. Per Page