Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    The Importance of Adequate Turbulence Modeling in Fluid Flows

    L.Q. Moreira1, F.P. Mariano2, A. Silveira-Neto1

    CMES-Computer Modeling in Engineering & Sciences, Vol.75, No.2, pp. 113-140, 2011, DOI:10.3970/cmes.2011.075.113

    Abstract Turbulence in fluid flow is one of the most challenging problems in classical physics. It is a very important research problem because of its numerous implications, such as industrial applications that involve processes using mixtures of components, heat transfer and lubrication and injection of fuel into the combustion chambers and propulsion systems of airplanes. Turbulence in flow presents characteristics that are fully nonlinear and that occur at high Reynolds numbers. Because of the nonlinear nature of turbulent flow, an increase in the Reynolds number implies an increase in the Kolmogorov wave numbers, and the flow spectrum becomes larger in both… More >

  • Open Access

    ARTICLE

    Large Eddy Simulation of Turbulent-Supersonic Boundary Layer Subjected to Multiple Distortions

    W. A. El-Askary1

    CMES-Computer Modeling in Engineering & Sciences, Vol.74, No.3&4, pp. 203-232, 2011, DOI:10.3970/cmes.2011.074.203

    Abstract Large eddy simulation (LES) is a viable and powerful tool to analyze unsteady three- dimensional turbulent flows. In this paper, the method of LES is used to compute a plane turbulent supersonic boundary layer subjected to different pressure gradients. The pressure gradients are generated by allowing the flow to pass in the vicinity of an expansion-compression ramp (inclined backward-facing step with leeward-face angle of 25 degrees) for an upstream Mach number of 2.9. The inflow boundary condition is the main problem for all turbulent wall-bounded flows. An approach to solve this problem is to extract instantaneous velocities, temperature and density… More >

  • Open Access

    ARTICLE

    Velocity Fluctuations in a Particle-Laden Turbulent Flow over a Backward-Facing Step

    B. Wang1, H.Q. Zhang1, C.K. Chan2, X.L. Wang1

    CMC-Computers, Materials & Continua, Vol.1, No.3, pp. 275-288, 2004, DOI:10.3970/cmc.2004.001.275

    Abstract Dilute gas-particle turbulent flow over a backward-facing step is numerically simulated. Large Eddy Simulation (LES) is used for the continuous phase and a Lagrangian trajectory method is adopted for the particle phase. Four typical locations in the flow field are chosen to investigate the two-phase velocity fluctuations. Time-series velocities of the gas phase with particles of different sizes are obtained. Velocity of the small particles is found to be similar to that of the gas phase, while high frequency noise exists in the velocity of the large particles. While the mean and rms velocities of the gas phase and small… More >

Displaying 11-20 on page 2 of 13. Per Page