Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Simulation Analysis on Mechanical Property Characterization of Carbon Nanotubes Reinforced Epoxy Composites

    Dan Li1, Li Ding1, Zhengang Liu2, Qiang Li3, Kaiyun Guo1, Hailin Cao1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 145-171, 2020, DOI:10.32604/cmes.2020.010822

    Abstract Carbon nanotube (CNT)-reinforced composites have ultra-high elastic moduli, low densities, and fibrous structures. This paper presents the multi-scale finite element modeling of CNT-reinforced polymer composites from micro- to macro-scales. The nanocomposites were modeled using representative volume elements (RVEs), and finite element code was written to simulate the modeling and loading procedure and obtain equivalent mechanical properties of the RVEs with various volume fractions of CNTs, which can be used directly in the follow-up simulation studies on the macroscopic model of CNT-reinforced nanocomposites. When using the programming to simulate the deformation and fracture process of the CNT-reinforced epoxy composites, the mechanical… More >

  • Open Access

    ABSTRACT

    Discrete Lattice Modeling of Atomistic Locations in the Interfaces Between Nanomaterials

    V.K. Tewary

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 113-114, 2011, DOI:10.3970/icces.2011.019.113

    Abstract Interfacial region between two nanomaterials can be treated as a separate material since its atomistic structure and characteristics are different than the two materials on its either side. The mechanical as well as electronic properties of composite materials are sensitive to the interfaces. For industrial application of the nanomaterial systems, it is vital to model and measure the discrete atomistic locations in the interface during operating conditions. As the dimensions of nanomaterial systems shrink, the role of interfaces become increasingly important. Because of its nanothickness, the conventional characterization and design parameters like elastic constants, stress and strains are not reliable… More >

Displaying 1-10 on page 1 of 2. Per Page