Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    HEAT TRANSFER INFERENCES ON THE HERSCHEL BULKLEY FLUID FLOW UNDER PERISTALSIS

    G. C. Sankad* , Asha Patil

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.17

    Abstract Heat transfer effect on the flow of Herschel Bulkley fluid moving in a non-uniform channel is analyzed. The peristaltic wall is considered to be coated with a porous lining. The pertinent parameter effects are studied graphically for the analytical solutions of temperature profile, rate of temperature, heat transfer coefficient and mechanical efficiency. The temperature profile, heat transfer coefficient and the rate of temperature decrease with increase in the Darcy number. Thickening of the porous wall coating raises the temperature profile and the rate measure of temperature. Mechanical efficiency is more in a convergent channel than in uniform and divergent channels. More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION FOR INVERSE HEAT CONDUCTION PROBLEM OF SINGLE-LAYER LINING EROSION OF BLAST FURNACE

    Fuyong Sua,*, Rui Songa , Peiwei Nia , Zhi Wenb

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-5, 2019, DOI:10.5098/hmt.12.25

    Abstract A mathematical model of the inverse heat transfer problem of blast furnace lining is established in this study. Following the identification of the boundary conditions of the model, the inverse problem via the conjugate gradient method was decomposed into three issues: the direct problem, the sensitivity problem, and the adjoint problem. The feasibility of the model was verified through two types of real inner wall boundary shape functions. The effects of the initial inner wall boundary shape function and the number of measuring points are also investigated. Results showed that the accuracy of the inverse solution is independent of the… More >

  • Open Access

    ARTICLE

    COUPLING ANALYSIS OF ELECTROMAGNETIC AND TEMPERATURE FIELD IN SELF-FORMED LINING ELECTRIC FURNACE

    Lei Zhanga , Fuyong Sua,*, Zhi Wena, Shuming Taob

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-9, 2022, DOI:10.5098/hmt.18.33

    Abstract To study the electric furnace melting process of different process parameters (e.g., current frequency, electric current intensity, the insertion depth of the electrode column, and water wall temperature) for each field quantity change and the impact of electric furnace slag conditioning, the mathematical model of the electromagnetic and temperature fields of the slag tempering process in electric furnace was established, and the numerical simulation was analyzed by the ANSYS finite element software. Research results show that current skin effect appears with the increase in current frequency, while the difference between the two ends and the center of the magnetic induction… More >

  • Open Access

    ARTICLE

    Study on Crack Propagation Parameters of Tunnel Lining Structure Based on Peridynamics

    Zhihui Xiong, Xiaohui Zhou*, Jinjie Zhao, Hao Cui, Bo Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2449-2478, 2023, DOI:10.32604/cmes.2023.023353

    Abstract The numerical simulation results utilizing the Peridynamics (PD) method reveal that the initial crack and crack propagation of the tunnel concrete lining structure agree with the experimental data compared to the Japanese prototype lining test. The load structure model takes into account the cracking process and distribution of the lining segment under the influence of local bias pressure and lining thickness. In addition, the influence of preset cracks and lining section form on the crack propagation of the concrete lining model is studied. This study evaluates the stability and sustainability of tunnel structure by the Peridynamics method, which provides a… More >

  • Open Access

    ARTICLE

    Analysis of a Cashew Shell and Fly Ash Rich Brake Liner Composite Material

    R. Selvam1,*, L. Ganesh Babu2, Joji Thomas3, R. Prakash1, T. Karthikeyan1, T. Maridurai4

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 569-577, 2023, DOI:10.32604/fdmp.2022.022187

    Abstract Hybrid materials collected from organic and inorganic sources, which are traditionally used as brake lining materials, generally include fly ash, cashew shell powder, phenolic resins, aluminium wool, barites, lime powder, carbon powder and copper powder. The present research focuses on the specific effects produced by fly ash and aims to provide useful indications for the replacement of asbestos due to the health hazards caused by the related fibers. Furthermore, the financial implications related to the use of large-volume use of fly ash, lime stone and cashew shell powder, readily available in most countries in the world, are also discussed. It… More > Graphic Abstract

    Analysis of a Cashew Shell and Fly Ash Rich Brake Liner Composite Material

  • Open Access

    ARTICLE

    Analysis of the Stability and Mechanical Characteristics of the Jointed Surrounding Rock and Lining Structure of a Deeply Buried Hydraulic Tunnel

    Changchang Li1, Zuguo Mo2, Haibo Jiang1,*, Fengchun Yang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.1, pp. 29-39, 2022, DOI:10.32604/fdmp.2022.017947

    Abstract On-site monitoring and numerical simulation have been combined to analyze the stability of the jointed surrounding rock and the stress inside the lining structure of a sample deeply buried hydraulic tunnel. We show that the deformation around the tunnel was mainly concentrated in the range 51.37 mm∼66.73 mm, the tunnel circumference was dominated by shear failure, and the maximum plastic zone was about 3.90 m. When the shotcrete treatment was performed immediately after the excavation, the deformation of the surrounding rock was reduced by 58.94%∼76.31%, and the extension of the plastic zone was relatively limited, thereby leading to improvements in terms… More >

  • Open Access

    ARTICLE

    Elastoplastic Analysis of Circular Tunnel in Saturated Ground Under Different Load Conditions

    Panpan Zhai1, 2, Ping Xu1, 2, *

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 179-197, 2020, DOI:10.32604/cmc.2020.06474

    Abstract When a tunnel is excavated below the groundwater table, groundwater flows in through the excavated wall of the tunnel and seepage forces act on it. These forces significantly affect the ground reaction curve, which is defined as the relationship between the internal pressure and radial displacement of the tunnel wall. This study investigates analytical solutions for seepage forces acting on the lining of a circular tunnel under steady-state groundwater flow. Considering the tunnel’s construction or service period and boundary conditions, the direction of maximum principal stress changes, and the input stress of the Mohr-Coulomb criterion varies. The stress distribution and… More >

  • Open Access

    ABSTRACT

    Effect of chamfered brake pad patterns & lining friction coefficients on the vibration squeal response for automotive disc brake system

    En-Cheng Liu1, Syh-Tsang Jenq1,2, Shih-Wei Kung3, Chie Gau1, Hsin-Luen Tsai4, Cheng-Ching Lee5, Yu-Der Chen5

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.4, pp. 245-246, 2009, DOI:10.3970/icces.2009.009.245

    Abstract The purpose of the present work is to study the disc brake squeal problem for passenger cars in order to reduce the instable high frequency squeal modes. The ABAQUS/Standard implicit method was used to perform dynamic contact vibration analysis of the current disc brake finite element model. The disc brake system studied here contains the caliper, bracket, brake disc, and brake pad. Notice that brake pad in general contains both brake lining and brake shoe. The brake pad with a specific chamfer pattern and the brake disc with a series of cooling ribs for ventilation were numerically constructed in the… More >

  • Open Access

    ARTICLE

    Contact between a Tunnel Lining and a Damage-Susceptible Viscoplastic Medium

    Frederic L. Pellet1

    CMES-Computer Modeling in Engineering & Sciences, Vol.52, No.3, pp. 279-296, 2009, DOI:10.3970/cmes.2009.052.279

    Abstract In this study, the contact and interaction between a tunnel lining support and a damage-susceptible viscoplastic medium is investigated. First, back-analysis of the time-dependent behaviour of a drift excavated across a carboniferous rock mass which exhibited large delayed displacements was undertaken. Drift closure was simulated using an elasto-viscoplastic constitutive model that included the strength degradation process. This 3D numerical simulation was performed taking into account both stage construction sequence and rate of excavation advancement. A comparison of the numerical results with the data measured on site allowed for the calibration of the model parameters. Subsequently, the installation of a concrete… More >

Displaying 1-10 on page 1 of 9. Per Page