Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Influence of Clip Locations on Intraaneurysmal Flow Dynamics in Patient-specific Anterior Communicating Aneurysm Models with Different Aneurysmal Angle

    Lizhong Mu1, *, Qingzhuo Chi1, Changjin Ji2, Ying He1, Ge Gao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.2, pp. 175-197, 2018, DOI:10.31614/cmes.2018.04191

    Abstract To improve aneurysm treatment, this study examined the influence of clip locations on hemodynamic factors in patient-specific anterior communicating artery (ACoA) aneurysms with different aneurysmal angle. We proposed a simplified classification of ACoA aneurysms using aneurysmal angle, defined by the angle of pivot of the aneurysmal dome and the virtual two-dimensional plane created by both proximal A2 segments of anterior cerebral artery (ACA). ACoA aneurysms with three different aneurysmal angles, which are 15°, 80° and 120°, were analyzed in our study. In this work, we obtained hemodynamics before and after clipping surgery with three clip locations based on clinical clipping… More >

  • Open Access

    ABSTRACT

    Discrete Lattice Modeling of Atomistic Locations in the Interfaces Between Nanomaterials

    V.K. Tewary

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.4, pp. 113-114, 2011, DOI:10.3970/icces.2011.019.113

    Abstract Interfacial region between two nanomaterials can be treated as a separate material since its atomistic structure and characteristics are different than the two materials on its either side. The mechanical as well as electronic properties of composite materials are sensitive to the interfaces. For industrial application of the nanomaterial systems, it is vital to model and measure the discrete atomistic locations in the interface during operating conditions. As the dimensions of nanomaterial systems shrink, the role of interfaces become increasingly important. Because of its nanothickness, the conventional characterization and design parameters like elastic constants, stress and strains are not reliable… More >

  • Open Access

    ABSTRACT

    Higher-Order Stress and Size Effects Due to Self Energy of Geometrically Necessary Dislocations

    N. Ohno1, D. Okumura1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.4, pp. 207-214, 2007, DOI:10.3970/icces.2007.004.207

    Abstract The self energy of geometrically necessary dislocations (GNDs) is considered to inevitably introduce the higher-order stress work-conjugate to slip gradient in single crystals. It is pointed out that this higher-order stress stepwise changes in response to in-plane slip gradient and thus directly influences the onset of initial yielding in polycrystals. The self energy of GNDs is then incorporated into the strain gradient theory of Gurtin (2002). The resulting theory is applied to model crystal grains of size D, leading to a D-1-dependent term with a coefficient determined by grain shape and orientation. It is thus shown that the self energy… More >

  • Open Access

    ABSTRACT

    Dislocations analysis of silicon crystal through action-derived molecular dynamics with tight-binding method

    Youngmin Lee, Jae Shin Park, Seyoung Im

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.2, pp. 51-52, 2009, DOI:10.3970/icces.2009.010.051

    Abstract We study energetics and mobility of dislocations in silicon crystal in atomistic scale. The electronic structure of silicon affects its dynamics, so that it is analyzed with tight-binding method for high accuracy, emerged as a useful method for studying structural and dynamical properties of covalent systems. The tight biding potential used for silicon crystalline is the one of GSP known as a transferable potential. Due to the nature of rare events, the analysis is executed by action-derived molecular dynamics (ADMD) calculations. The changes of the system energy due to dislocation glide are explored with a view to finding the Peierls… More >

  • Open Access

    ARTICLE

    A Method for Rapidly Determining the Optimal Distribution Locations of GNSS Stations for Orbit and ERP Measurement Based on Map Grid Zooming and Genetic Algorithm

    Qianxin Wang1,2,3, Chao Hu1,2,*, Ya Mao1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.3, pp. 509-525, 2018, DOI:10.31614/cmes.2018.04098

    Abstract Designing the optimal distribution of Global Navigation Satellite System (GNSS) ground stations is crucial for determining the satellite orbit, satellite clock and Earth Rotation Parameters (ERP) at a desired precision using a limited number of stations. In this work, a new criterion for the optimal GNSS station distribution for orbit and ERP determination is proposed, named the minimum Orbit and ERP Dilution of Precision Factor (OEDOP) criterion. To quickly identify the specific station locations for the optimal station distribution on a map, a method for the rapid determination of the selected station locations is developed, which is based on the… More >

  • Open Access

    CORRECTION

    Erratum to: "Finite Element Analysis of Discrete Circular Dislocations" [CMES, vol. 60, no. 2, pp. 181-198, 2010]

    K.P. Baxevanakis1, A.E. Giannakopoulos2

    CMES-Computer Modeling in Engineering & Sciences, Vol.97, No.6, pp. 535-544, 2014, DOI:10.3970/cmes.2014.097.535

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Multiscale Simulation of Nanoindentation Using the Generalized Interpolation Material Point (GIMP) Method, Dislocation Dynamics (DD) and Molecular Dynamics (MD)

    Jin Ma, Yang Liu, Hongbing Lu, Ranga Komanduri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.1, pp. 41-56, 2006, DOI:10.3970/cmes.2006.016.041

    Abstract A multiscale simulation technique coupling three scales, namely, the molecular dynamics (MD) at the atomistic scale, the discrete dislocations at the meso scale and the generalized interpolation material point (GIMP) method at the continuum scale is presented. Discrete dislocations are first coupled with GIMP using the principle of superposition (van der Giessen and Needleman (1995)). A detection band seeded in the MD region is used to pass the dislocations to and from the MD simulations (Shilkrot, Miller and Curtin (2004)). A common domain decomposition scheme for each of the three scales was implemented for parallel processing. Simulations of indentation were… More >

  • Open Access

    ARTICLE

    Efficient Green's Function Modeling of Line and Surface Defects in Multilayered Anisotropic Elastic and Piezoelectric Materials1

    B. Yang2, V. K. Tewary3

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 165-178, 2006, DOI:10.3970/cmes.2006.015.165

    Abstract Green's function (GF) modeling of defects may take effect only if the GF as well as its various integrals over a line, a surface and/or a volume can be efficiently evaluated. The GF is needed in modeling a point defect, while integrals are needed in modeling line, surface and volumetric defects. In a matrix of multilayered, generally anisotropic and linearly elastic and piezoelectric materials, the GF has been derived by applying 2D Fourier transforms and the Stroh formalism. Its use involves another two dimensions of integration in the Fourier inverse transform. A semi-analytical scheme has been developed previously for efficient… More >

  • Open Access

    ARTICLE

    Finite Element Analysis of Discrete Circular Dislocations

    K.P. Baxevanakis1, A.E. Giannakopoulos2

    CMES-Computer Modeling in Engineering & Sciences, Vol.60, No.2, pp. 181-198, 2010, DOI:10.3970/cmes.2010.060.181

    Abstract The present work gives a systematic and rigorous implementation of (edge type) circular Volterra dislocation loops in ordinary axisymmetric finite elements using the thermal analogue and the integral representation of dislocations through stresses. The accuracy of the proposed method is studied in problems where analytical solutions exist. The full fields are given for loop dislocations in isotropic and anisotropic crystals and the Peach-Koehler forces are calculated for loops approaching free surfaces and bimaterial interfaces. The results are expected to be very important in the analysis of plastic yield strength, giving quantitative results regarding the influence of grain boundaries, interstitial particles,… More >

  • Open Access

    ARTICLE

    Evaluation of Seismic Design Values in the Taiwan Building Code by Using Artificial Neural Network

    Tienfuan Kerh1,2, J.S. Lai1, D. Gunaratnam2, R. Saunders2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.1, pp. 1-12, 2008, DOI:10.3970/cmes.2008.026.001

    Abstract Taiwan frequently suffers from strong ground motion, and the current building code is essentially based on two seismic zones, A and B. The design value of horizontal acceleration for zone A is 0.33g, and the value for zone B is 0.23g. To check the suitability of these values, a series of actual earthquake records are considered for evaluating peak ground acceleration (PGA) for each of the zones by using neural network models. The input parameters are magnitude, epicenter distance, and focal depth for each of the checking stations, and the peak ground acceleration is calculated as the output with the… More >

Displaying 11-20 on page 2 of 24. Per Page