Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    Prediction on Failure Pressure of Pipeline Containing Corrosion Defects Based on ISSA-BPNN Model

    Qi Zhuang1,*, Dong Liu2, Zhuo Chen3

    Energy Engineering, Vol.121, No.3, pp. 821-834, 2024, DOI:10.32604/ee.2023.044054

    Abstract Oil and gas pipelines are affected by many factors, such as pipe wall thinning and pipeline rupture. Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management. Aiming at the shortcomings of the BP Neural Network (BPNN) model, such as low learning efficiency, sensitivity to initial weights, and easy falling into a local optimal state, an Improved Sparrow Search Algorithm (ISSA) is adopted to optimize the initial weights and thresholds of BPNN, and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established. Taking 61 sets of pipelines blasting test data… More >

  • Open Access


    Fuzzy Hybrid Coyote Optimization Algorithm for Image Thresholding

    Linguo Li1,2, Xuwen Huang2, Shunqiang Qian2, Zhangfei Li2, Shujing Li2,*, Romany F. Mansour3

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3073-3090, 2022, DOI:10.32604/cmc.2022.026625

    Abstract In order to address the problems of Coyote Optimization Algorithm in image thresholding, such as easily falling into local optimum, and slow convergence speed, a Fuzzy Hybrid Coyote Optimization Algorithm (hereinafter referred to as FHCOA) based on chaotic initialization and reverse learning strategy is proposed, and its effect on image thresholding is verified. Through chaotic initialization, the random number initialization mode in the standard coyote optimization algorithm (COA) is replaced by chaotic sequence. Such sequence is nonlinear and long-term unpredictable, these characteristics can effectively improve the diversity of the population in the optimization algorithm. Therefore, in this paper we first… More >

Displaying 1-10 on page 1 of 2. Per Page