Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,290)
  • Open Access

    ARTICLE

    A Decentralized Identity Framework for Secure Federated Learning in Healthcare

    Samuel Acheme*, Glory Nosawaru Edegbe

    Journal of Cyber Security, Vol.8, pp. 1-31, 2026, DOI:10.32604/jcs.2026.073923 - 07 January 2026

    Abstract Federated learning (FL) enables collaborative model training across decentralized datasets, thus maintaining the privacy of training data. However, FL remains vulnerable to malicious actors, posing significant risks in privacy-sensitive domains like healthcare. Previous machine learning trust frameworks, while promising, often rely on resource-intensive blockchain ledgers, introducing computational overhead and metadata leakage risks. To address these limitations, this study presents a novel Decentralized Identity (DID) framework for mutual authentication that establishes verifiable trust among participants in FL without dependence on centralized authorities or high-cost blockchain ledgers. The proposed system leverages Decentralized Identifiers (DIDs) and Verifiable Credentials… More >

  • Open Access

    ARTICLE

    Stress Redistribution Patterns in Road-Rail Double-Deck Bridges: Insights from Long-Term Bridge Health Monitoring

    Benyu Wang*, Ke Chen, Bingjian Wang#,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070137 - 08 January 2026

    Abstract To examine stress redistribution phenomena in bridges subjected to varying operational conditions, this study conducts a comprehensive analysis of three years of monitoring data from a 153-m double-deck road–rail steel arch bridge. An initial statistical comparison of sensor data distributions reveals clear temporal variations in stress redistribution patterns. XGBoost (eXtreme Gradient Boosting), a gradient-boosting machine learning (ML) algorithm, was employed not only for predictive modeling but also to uncover the underlying mechanisms of stress evolution. Unlike traditional numerical models that rely on extensive assumptions and idealizations, XGBoost effectively captures nonlinear and time-varying relationships between stress… More >

  • Open Access

    ARTICLE

    STC2+ Malignant Cell State Associated with EMT, Tumor Microenvironment Remodeling, and Poor Prognosis Revealed by Single-Cell and Spatial Transcriptomics in Colorectal Cancer

    Kai Gui1,#, Tianyi Yang1,#, Chengying Xiong1, Yue Wang1, Zhiqiang He1, Wuxian Li2,3,*, Min Tang1,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.070143 - 30 December 2025

    Abstract Objectives: The mechanism by which specific tumor subsets in colorectal cancer (CRC) use alternative metabolic pathways, particularly those modulated by hypoxia and fructose, to alter the tumor microenvironment (TME) remains unclear. This study aimed to identify these malignant subpopulations and characterize their intercellular signaling networks and spatial organization through an integrative multi-omics approach. Methods: Leveraging bulk datasets, single-cell RNA sequencing, and integrative spatial transcriptomics, we developed a prognostic model based on hypoxia-and fructose metabolism-related genes (HFGs) to delineate tumor cell subpopulations and their intercellular signaling networks. Results: We identified a specific subset of stanniocalcin-2 positive (STC2+)… More > Graphic Abstract

    STC2+ Malignant Cell State Associated with EMT, Tumor Microenvironment Remodeling, and Poor Prognosis Revealed by Single-Cell and Spatial Transcriptomics in Colorectal Cancer

  • Open Access

    ARTICLE

    Machine Learning Based Uncertain Free Vibration Analysis of Hybrid Composite Plates

    Bindi Saurabh Thakkar1, Pradeep Kumar Karsh2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-22, 2026, DOI:10.32604/cmc.2025.072839 - 09 December 2025

    Abstract This study investigates the uncertain dynamic characterization of hybrid composite plates by employing advanced machine-assisted finite element methodologies. Hybrid composites, widely used in aerospace, automotive, and structural applications, often face variability in material properties, geometric configurations, and manufacturing processes, leading to uncertainty in their dynamic response. To address this, three surrogate-based machine learning approaches like radial basis function (RBF), multivariate adaptive regression splines (MARS), and polynomial neural networks (PNN) are integrated with a finite element framework to efficiently capture the stochastic behavior of these plates. The research focuses on predicting the first three natural frequencies… More >

  • Open Access

    REVIEW

    FSL-TM: Review on the Integration of Federated Split Learning with TinyML in the Internet of Vehicles

    Meenakshi Aggarwal1, Vikas Khullar2,*, Nitin Goyal3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.072673 - 09 December 2025

    Abstract The Internet of Vehicles, or IoV, is expected to lessen pollution, ease traffic, and increase road safety. IoV entities’ interconnectedness, however, raises the possibility of cyberattacks, which can have detrimental effects. IoV systems typically send massive volumes of raw data to central servers, which may raise privacy issues. Additionally, model training on IoV devices with limited resources normally leads to slower training times and reduced service quality. We discuss a privacy-preserving Federated Split Learning with Tiny Machine Learning (TinyML) approach, which operates on IoV edge devices without sharing sensitive raw data. Specifically, we focus on… More >

  • Open Access

    ARTICLE

    Machine Learning-Based GPS Spoofing Detection and Mitigation for UAVs

    Charlotte Olivia Namagembe, Mohamad Ibrahim, Md Arafatur Rahman*, Prashant Pillai

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.070316 - 09 December 2025

    Abstract The rapid proliferation of commercial unmanned aerial vehicles (UAVs) has revolutionized fields such as precision agriculture and disaster response. However, their heavy reliance on GPS navigation leaves them highly vulnerable to spoofing attacks, with potentially severe consequences. To mitigate this threat, we present a machine learning-driven framework for real-time GPS spoofing detection, designed with a balance of detection accuracy and computational efficiency. Our work is distinguished by the creation of a comprehensive dataset of 10,000 instances that integrates both simulated and real-world data, enabling robust and generalizable model development. A comprehensive evaluation of multiple classification More >

  • Open Access

    ARTICLE

    Cognitive Erasure-Coded Data Update and Repair for Mitigating I/O Overhead

    Bing Wei, Ming Zhong, Qian Chen, Yi Wu*, Yubin Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069910 - 09 December 2025

    Abstract In erasure-coded storage systems, updating data requires parity maintenance, which often leads to significant I/O amplification due to “write-after-read” operations. Furthermore, scattered parity placement increases disk seek overhead during repair, resulting in degraded system performance. To address these challenges, this paper proposes a Cognitive Update and Repair Method (CURM) that leverages machine learning to classify files into write-only, read-only, and read-write categories, enabling tailored update and repair strategies. For write-only and read-write files, CURM employs a data-difference mechanism combined with fine-grained I/O scheduling to minimize redundant read operations and mitigate I/O amplification. For read-write files,… More >

  • Open Access

    ARTICLE

    An Improved Forest Fire Detection Model Using Audio Classification and Machine Learning

    Kemahyanto Exaudi1,2, Deris Stiawan3,*, Bhakti Yudho Suprapto1, Hanif Fakhrurroja4, Mohd. Yazid Idris5, Tami A. Alghamdi6, Rahmat Budiarto6

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.069377 - 10 November 2025

    Abstract Sudden wildfires cause significant global ecological damage. While satellite imagery has advanced early fire detection and mitigation, image-based systems face limitations including high false alarm rates, visual obstructions, and substantial computational demands, especially in complex forest terrains. To address these challenges, this study proposes a novel forest fire detection model utilizing audio classification and machine learning. We developed an audio-based pipeline using real-world environmental sound recordings. Sounds were converted into Mel-spectrograms and classified via a Convolutional Neural Network (CNN), enabling the capture of distinctive fire acoustic signatures (e.g., crackling, roaring) that are minimally impacted by… More >

  • Open Access

    ARTICLE

    Intelligent Semantic Segmentation with Vision Transformers for Aerial Vehicle Monitoring

    Moneerah Alotaibi*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069195 - 10 November 2025

    Abstract Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods, which often demand extensive computational resources and struggle with diverse data acquisition techniques. This research presents a novel approach for vehicle classification and recognition in aerial image sequences, integrating multiple advanced techniques to enhance detection accuracy. The proposed model begins with preprocessing using Multiscale Retinex (MSR) to enhance image quality, followed by Expectation-Maximization (EM) Segmentation for precise foreground object identification. Vehicle detection is performed using the state-of-the-art YOLOv10 framework, while feature extraction incorporates Maximally Stable Extremal… More >

  • Open Access

    ARTICLE

    Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization

    Amjad Rehman1,*, Tanzila Saba1, Mona M. Jamjoom2, Shaha Al-Otaibi3, Muhammad I. Khan1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.068958 - 10 November 2025

    Abstract Modern intrusion detection systems (MIDS) face persistent challenges in coping with the rapid evolution of cyber threats, high-volume network traffic, and imbalanced datasets. Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively. This study introduces an advanced, explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets, which reflects real-world network behavior through a blend of normal and diverse attack classes. The methodology begins with sophisticated data preprocessing, incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions, ensuring standardized and model-ready inputs.… More >

Displaying 1-10 on page 1 of 1290. Per Page