Jianping Li, Wan Xiong, Tenghang Zhang, Hao Cheng, Kun Shen, Miaojin He, Yu Zhang, Junxin Song, Ying Deng*, Qiaowang Chen*
CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2189-2216, 2025, DOI:10.32604/cmc.2025.066128
- 03 July 2025
Abstract Tungsten carbide-based (WC-based) cemented carbides are widely recognized as high-performance tool materials. Traditionally, single metals such as cobalt (Co) or nickel (Ni) serve as the binder phase, providing toughness and structural integrity. Replacing this phase with high-entropy alloys (HEAs) offers a promising approach to enhancing mechanical properties and addressing sustainability challenges. However, the complex multi-element composition of HEAs complicates conventional experimental design, making it difficult to explore the vast compositional space efficiently. Traditional trial-and-error methods are time-consuming, resource-intensive, and often ineffective in identifying optimal compositions. In contrast, artificial intelligence (AI)-driven approaches enable rapid screening and… More >