Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,026)
  • Open Access

    ARTICLE

    A Study on Outlier Detection and Feature Engineering Strategies in Machine Learning for Heart Disease Prediction

    Varada Rajkumar Kukkala1, Surapaneni Phani Praveen2, Naga Satya Koti Mani Kumar Tirumanadham3, Parvathaneni Naga Srinivasu4,5,*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1085-1112, 2024, DOI:10.32604/csse.2024.053603

    Abstract This paper investigates the application of machine learning to develop a response model to cardiovascular problems and the use of AdaBoost which incorporates an application of Outlier Detection methodologies namely; Z-Score incorporated with Grey Wolf Optimization (GWO) as well as Interquartile Range (IQR) coupled with Ant Colony Optimization (ACO). Using a performance index, it is shown that when compared with the Z-Score and GWO with AdaBoost, the IQR and ACO, with AdaBoost are not very accurate (89.0% vs. 86.0%) and less discriminative (Area Under the Curve (AUC) score of 93.0% vs. 91.0%). The Z-Score and GWO… More >

  • Open Access

    ARTICLE

    Efficient Intelligent E-Learning Behavior-Based Analytics of Student’s Performance Using Deep Forest Model

    Raed Alotaibi1, Omar Reyad2,3, Mohamed Esmail Karar4,*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1133-1147, 2024, DOI:10.32604/csse.2024.053358

    Abstract E-learning behavior data indicates several students’ activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures. This article proposes a new analytics system to support academic evaluation for students via e-learning activities to overcome the challenges faced by traditional learning environments. The proposed e-learning analytics system includes a new deep forest model. It consists of multistage cascade random forests with minimal hyperparameters compared to traditional deep neural networks. The developed forest model can analyze each student’s activities during the use of an e-learning… More >

  • Open Access

    ARTICLE

    Modern Mobile Malware Detection Framework Using Machine Learning and Random Forest Algorithm

    Mohammad Ababneh*, Ayat Al-Droos, Ammar El-Hassan

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1171-1191, 2024, DOI:10.32604/csse.2024.052875

    Abstract With the high level of proliferation of connected mobile devices, the risk of intrusion becomes higher. Artificial Intelligence (AI) and Machine Learning (ML) algorithms started to feature in protection software and showed effective results. These algorithms are nonetheless hindered by the lack of rich datasets and compounded by the appearance of new categories of malware such that the race between attackers’ malware, especially with the assistance of Artificial Intelligence tools and protection solutions makes these systems and frameworks lose effectiveness quickly. In this article, we present a framework for mobile malware detection based on a… More >

  • Open Access

    ARTICLE

    A Stacking Machine Learning Model for Student Performance Prediction Based on Class Activities in E-Learning

    Mohammad Javad Shayegan*, Rosa Akhtari

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1251-1272, 2024, DOI:10.32604/csse.2024.052587

    Abstract After the spread of COVID-19, e-learning systems have become crucial tools in educational systems worldwide, spanning all levels of education. This widespread use of e-learning platforms has resulted in the accumulation of vast amounts of valuable data, making it an attractive resource for predicting student performance. In this study, we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds datasets. The stacking method was employed for modeling in this research. The proposed model utilized weak learners, including nearest neighbor, decision tree, random forest, enhanced gradient, simple Bayes, More >

  • Open Access

    ARTICLE

    Digital Soil Mapping (DSM) Using a GIS-Based RF Machine Learning Model: The Case of Strandzha Mountains (Thrace Peninsula, Türkiye)

    Emre Ozsahin1,*, Huseyin Sarı2, Duygu Boyraz Erdem2, Mikayil Ozturk2

    Revue Internationale de Géomatique, Vol.33, pp. 341-361, 2024, DOI:10.32604/rig.2024.054197

    Abstract This study assessed and mapped the spatial distribution of soil types and properties developed under the forest cover of the Strandzha Mountains of Türkiye. The study was conducted on a micro-scale in the riparian zone of the Balaban River, which characterizes the soils distributed in the mountainous area. The effect of environmental factors on the spatial distribution of soil types and properties was also determined. To gather data, soil sampling, laboratory analysis, data processing and mapping were sequentially performed. These data were analyzed using the Geographical Information System (GIS) based Random Forest (RF) machine learning… More > Graphic Abstract

    Digital Soil Mapping (DSM) Using a GIS-Based RF Machine Learning Model: The Case of Strandzha Mountains (Thrace Peninsula, Türkiye)

  • Open Access

    ARTICLE

    Diabetic Retinopathy Detection: A Hybrid Intelligent Approach

    Atta Rahman1,*, Mustafa Youldash2, Ghaida Alshammari2, Abrar Sebiany2, Joury Alzayat2, Manar Alsayed2, Mona Alqahtani2, Noor Aljishi2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4561-4576, 2024, DOI:10.32604/cmc.2024.055106

    Abstract Diabetes is a serious health condition that can cause several issues in human body organs such as the heart and kidney as well as a serious eye disease called diabetic retinopathy (DR). Early detection and treatment are crucial to prevent complete blindness or partial vision loss. Traditional detection methods, which involve ophthalmologists examining retinal fundus images, are subjective, expensive, and time-consuming. Therefore, this study employs artificial intelligence (AI) technology to perform faster and more accurate binary classifications and determine the presence of DR. In this regard, we employed three promising machine learning models namely, support… More >

  • Open Access

    ARTICLE

    Machine Fault Diagnosis Using Audio Sensors Data and Explainable AI Techniques-LIME and SHAP

    Aniqua Nusrat Zereen1, Abir Das2, Jia Uddin3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3463-3484, 2024, DOI:10.32604/cmc.2024.054886

    Abstract Machine fault diagnostics are essential for industrial operations, and advancements in machine learning have significantly advanced these systems by providing accurate predictions and expedited solutions. Machine learning models, especially those utilizing complex algorithms like deep learning, have demonstrated major potential in extracting important information from large operational datasets. Despite their efficiency, machine learning models face challenges, making Explainable AI (XAI) crucial for improving their understandability and fine-tuning. The importance of feature contribution and selection using XAI in the diagnosis of machine faults is examined in this study. The technique is applied to evaluate different machine-learning More >

  • Open Access

    ARTICLE

    Knowledge-Driven Possibilistic Clustering with Automatic Cluster Elimination

    Xianghui Hu1, Yiming Tang2,3, Witold Pedrycz3,4, Jiuchuan Jiang5,*, Yichuan Jiang1,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4917-4945, 2024, DOI:10.32604/cmc.2024.054775

    Abstract Traditional Fuzzy C-Means (FCM) and Possibilistic C-Means (PCM) clustering algorithms are data-driven, and their objective function minimization process is based on the available numeric data. Recently, knowledge hints have been introduced to form knowledge-driven clustering algorithms, which reveal a data structure that considers not only the relationships between data but also the compatibility with knowledge hints. However, these algorithms cannot produce the optimal number of clusters by the clustering algorithm itself; they require the assistance of evaluation indices. Moreover, knowledge hints are usually used as part of the data structure (directly replacing some clustering centers),… More >

  • Open Access

    ARTICLE

    Machine Learning Enabled Novel Real-Time IoT Targeted DoS/DDoS Cyber Attack Detection System

    Abdullah Alabdulatif1, Navod Neranjan Thilakarathne2,*, Mohamed Aashiq3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3655-3683, 2024, DOI:10.32604/cmc.2024.054610

    Abstract The increasing prevalence of Internet of Things (IoT) devices has introduced a new phase of connectivity in recent years and, concurrently, has opened the floodgates for growing cyber threats. Among the myriad of potential attacks, Denial of Service (DoS) attacks and Distributed Denial of Service (DDoS) attacks remain a dominant concern due to their capability to render services inoperable by overwhelming systems with an influx of traffic. As IoT devices often lack the inherent security measures found in more mature computing platforms, the need for robust DoS/DDoS detection systems tailored to IoT is paramount for… More >

  • Open Access

    ARTICLE

    Improving Prediction Efficiency of Machine Learning Models for Cardiovascular Disease in IoST-Based Systems through Hyperparameter Optimization

    Tajim Md. Niamat Ullah Akhund1,2,*, Waleed M. Al-Nuwaiser3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3485-3506, 2024, DOI:10.32604/cmc.2024.054222

    Abstract This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST (Internet of Sensing Things) device. Ten distinct machine learning approaches were implemented and systematically evaluated before and after hyperparameter tuning. Significant improvements were observed across various models, with SVM and Neural Networks consistently showing enhanced performance metrics such as F1-Score, recall, and precision. The study underscores the critical role of tailored hyperparameter tuning in optimizing these models, revealing diverse outcomes among algorithms. Decision Trees and Random Forests exhibited stable performance throughout the evaluation. While More >

Displaying 1-10 on page 1 of 1026. Per Page