Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access


    Exploring Deep Learning Methods for Computer Vision Applications across Multiple Sectors: Challenges and Future Trends

    Narayanan Ganesh1, Rajendran Shankar2, Miroslav Mahdal3, Janakiraman Senthil Murugan4, Jasgurpreet Singh Chohan5, Kanak Kalita6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 103-141, 2024, DOI:10.32604/cmes.2023.028018

    Abstract Computer vision (CV) was developed for computers and other systems to act or make recommendations based on visual inputs, such as digital photos, movies, and other media. Deep learning (DL) methods are more successful than other traditional machine learning (ML) methods in CV. DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization, object detection, and face recognition. In this review, a structured discussion on the history, methods, and applications of DL methods to CV problems is presented. The sector-wise presentation of applications in this paper may be particularly useful for researchers More >

  • Open Access


    Machine Vision Based Fish Cutting Point Prediction for Target Weight

    Yonghun Jang, Yeong-Seok Seo*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2247-2263, 2023, DOI:10.32604/cmc.2023.027882

    Abstract Food processing companies pursue the distribution of ingredients that were packaged according to a certain weight. Particularly, foods like fish are highly demanded and supplied. However, despite the high quantity of fish to be supplied, most seafood processing companies have yet to install automation equipment. Such absence of automation equipment for seafood processing incurs a considerable cost regarding labor force, economy, and time. Moreover, workers responsible for fish processing are exposed to risks because fish processing tasks require the use of dangerous tools, such as power saws or knives. To solve these problems observed in… More >

  • Open Access


    Surface Characteristics Measurement Using Computer Vision: A Review

    Abdul Wahab Hashmi1, Harlal Singh Mali1, Anoj Meena1, Mohammad Farukh Hashmi2, Neeraj Dhanraj Bokde3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 917-1005, 2023, DOI:10.32604/cmes.2023.021223

    Abstract Computer vision provides image-based solutions to inspect and investigate the quality of the surface to be measured. For any components to execute their intended functions and operations, surface quality is considered equally significant to dimensional quality. Surface Roughness (Ra) is a widely recognized measure to evaluate and investigate the surface quality of machined parts. Various conventional methods and approaches to measure the surface roughness are not feasible and appropriate in industries claiming 100% inspection and examination because of the time and efforts involved in performing the measurement. However, Machine vision has emerged as the innovative More >

  • Open Access


    Up-Sampled Cross-Correlation Based Object Tracking & Vibration Measurement in Agriculture Tractor System

    R. Ganesan1,*, G. Sankaranarayanan1, M. Pradeep Kumar2, V. K. Bupesh Raja1

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 667-681, 2023, DOI:10.32604/iasc.2023.031932

    Abstract This research introduces a challenge in integrating and cleaning the data, which is a crucial task in object matching. While the object is detected and then measured, the vibration at different light intensities may influence the durability and reliability of mechanical systems or structures and cause problems such as damage, abnormal stopping, and disaster. Recent research failed to improve the accuracy rate and the computation time in tracking an object and in the vibration measurement. To solve all these problems, this proposed research simplifies the scaling factor determination by assigning a known real-world dimension to… More >

  • Open Access


    Calf Posture Recognition Using Convolutional Neural Network

    Tan Chen Tung1, Uswah Khairuddin1, Mohd Ibrahim Shapiai1, Norhariani Md Nor2,*, Mark Wen Han Hiew2, Nurul Aisyah Mohd Suhaimie3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1493-1508, 2023, DOI:10.32604/cmc.2023.029277

    Abstract Dairy farm management is crucial to maintain the longevity of the farm, and poor dairy youngstock or calf management could lead to gradually deteriorating calf health, which often causes premature death. This was found to be the most neglected part among the management workflows in Malaysia and has caused continuous loss over the recent years. Calf posture recognition is one of the effective methods to monitor calf behaviour and health state, which can be achieved by monitoring the calf behaviours of standing and lying where the former depicts active calf, and the latter, passive calf.… More >

  • Open Access


    Human and Machine Vision Based Indian Race Classification Using Modified-Convolutional Neural Network

    Vani A. Hiremani*, Kishore Kumar Senapati

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2603-2618, 2023, DOI:10.32604/csse.2023.027612

    Abstract The inter-class face classification problem is more reasonable than the intra-class classification problem. To address this issue, we have carried out empirical research on classifying Indian people to their geographical regions. This work aimed to construct a computational classification model for classifying Indian regional face images acquired from south and east regions of India, referring to human vision. We have created an Automated Human Intelligence System (AHIS) to evaluate human visual capabilities. Analysis of AHIS response showed that face shape is a discriminative feature among the other facial features. We have developed a modified convolutional… More >

  • Open Access


    Sika Deer Behavior Recognition Based on Machine Vision

    He Gong1,3,4, Mingwang Deng1, Shijun Li1,2,6,*, Tianli Hu1,3,4, Yu Sun1,3,4, Ye Mu1,3,4, Zilian Wang1, Chang Zhang1, Thobela Louis Tyasi5

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4953-4969, 2022, DOI:10.32604/cmc.2022.027457

    Abstract With the increasing intensive and large-scale development of the sika deer breeding industry, it is crucial to assess the health status of the sika deer by monitoring their behaviours. A machine vision–based method for the behaviour recognition of sika deer is proposed in this paper. Google Inception Net (GoogLeNet) is used to optimise the model in this paper. First, the number of layers and size of the model were reduced. Then, the 5 × 5 convolution was changed to two 3 × 3 convolutions, which reduced the parameters and increased the nonlinearity of the model.… More >

  • Open Access


    Automatic Detection of Weapons in Surveillance Cameras Using Efficient-Net

    Erssa Arif1,*, Syed Khuram Shahzad2, Muhammad Waseem Iqbal3, Muhammad Arfan Jaffar4, Abdullah S. Alshahrani5, Ahmed Alghamdi6

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4615-4630, 2022, DOI:10.32604/cmc.2022.027571

    Abstract The conventional Close circuit television (CCTV) cameras-based surveillance and control systems require human resource supervision. Almost all the criminal activities take place using weapons mostly a handheld gun, revolver, pistol, swords etc. Therefore, automatic weapons detection is a vital requirement now a day. The current research is concerned about the real-time detection of weapons for the surveillance cameras with an implementation of weapon detection using Efficient–Net. Real time datasets, from local surveillance department's test sessions are used for model training and testing. Datasets consist of local environment images and videos from different type and resolution More >

  • Open Access


    Deep Learning Framework for Precipitation Prediction Using Cloud Images

    Mirza Adnan Baig*, Ghulam Ali Mallah, Noor Ahmed Shaikh

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 4201-4213, 2022, DOI:10.32604/cmc.2022.026225

    Abstract Precipitation prediction (PP) have become one of the significant research areas of deep learning (DL) and machine vision (MV) techniques are frequently used to predict the weather variables (WV). Since the climate change has left significant impact upon weather variables (WV) and continuously changes are observed in temperature, humidity, cloud patterns and other factors. Although cloud images contain sufficient information to predict the precipitation pattern but due to changes in climate, the complex cloud patterns and rapid shape changing behavior of clouds are difficult to consider for rainfall prediction. Prediction of rainfall would provide more… More >

  • Open Access


    Deep Learning Framework for Classification of Emoji Based Sentiments

    Nighat Parveen Shaikh*, Mumtaz Hussain Mahar

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3145-3158, 2022, DOI:10.32604/cmc.2022.024843

    Abstract Recent patterns of human sentiments are highly influenced by emoji based sentiments (EBS). Social media users are widely using emoji based sentiments (EBS) in between text messages, tweets and posts. Although tiny pictures of emoji contains sufficient information to be considered for construction of classification model; but due to the wide range of dissimilar, heterogynous and complex patterns of emoji with similar meanings (SM) have become one of the significant research areas of machine vision. This paper proposes an approach to provide meticulous assistance to social media application (SMA) users to classify the EBS sentiments.… More >

Displaying 1-10 on page 1 of 11. Per Page