Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Improved YOLO11 for Maglev Train Foreign Object Detection

    Qinzhen Fang1,2, Dongliang Peng1,2, Lu Zeng1,2,*, Zixuan Jiang1,2

    Journal on Artificial Intelligence, Vol.7, pp. 469-484, 2025, DOI:10.32604/jai.2025.073016 - 06 November 2025

    Abstract To address the issues of small target miss detection, false positives in complex scenarios, and insufficient real-time performance in maglev train foreign object intrusion detection, this paper proposes a multi-module fusion improvement algorithm, YOLO11-FADA (Fusion of Augmented Features and Dynamic Attention), based on YOLO11. The model achieves collaborative optimization through three key modules: The Local Feature Augmentation Module (LFAM) enhances small target features and mitigates feature loss during down-sampling through multi-scale feature parallel extraction and attention fusion. The Dynamically Tuned Self-Attention (DTSA) module introduces learnable parameters to adjust attention weights dynamically, and, in combination with More >

  • Open Access

    ARTICLE

    Effect of Streamline Length on Aerodynamic Performance of 600 km/h Maglev Trains

    Yan Li1, Bailong Sun2, Tian Li2,*, Weihua Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1957-1970, 2025, DOI:10.32604/cmes.2025.069159 - 31 August 2025

    Abstract High-speed maglev trains represent a key direction for the future development of rail transportation. As operating speeds increase, they face increasingly severe aerodynamic challenges. The streamlined aerodynamic shape of a maglev train is a critical factor influencing its aerodynamic performance, and optimizing its length plays a significant role in improving the overall aerodynamic characteristics of the train. In this study, a numerical simulation model of a high-speed maglev train was established based on computational fluid dynamics (CFD) to investigate the effects of streamline length on the aerodynamic performance of the train operating on an open… More >

  • Open Access

    ARTICLE

    Effect of Railway Spacing on Aerodynamic Performance of 600 km/h Maglev Trains Passing Each Other

    Bailong Sun1, Tian Li1,*, Deng Qin1, Yan Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.2, pp. 371-385, 2025, DOI:10.32604/fdmp.2024.055519 - 06 March 2025

    Abstract High-speed maglev trains (HSMTs) can run at high running speeds due to their unique design. The pressure waves that these trains generate while passing each other are therefore very intense, and can even have safety implications. In order to reduce the transient impact of such waves, the standard k-ε turbulence model is used in this work to assess the effect of railway spacing on the aerodynamic loads, pressure and surrounding flow field of 600 km/h maglev trains passing each other in open air. The sliding mesh technique is used to determine the relative motion between the More >

  • Open Access

    ARTICLE

    Quantitative Effects of Velocity and Residual Pressure Level on Aerodynamic Noise of Ultra-High-Speed Maglev Trains

    Lanxi Zhang1, Yuming Peng1, Yudong Wu2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 205-220, 2025, DOI:10.32604/fdmp.2024.056516 - 24 January 2025

    Abstract The challenge of aerodynamic noise is a key obstacle in the advancement of low-pressure tube ultra-high-speed maglev transportation, demanding urgent resolution. This study utilizes a broadband noise source model to perform a quantitative analysis of the aerodynamic noise produced by ultra-high-speed maglev trains operating in low-pressure environments. Initially, an external flow field calculation model for the ultra-high-speed maglev train is presented. Subsequently, numerical simulations based on the broadband noise source model are used to examine the noise characteristics. The impact of the train speed and pressure level on noise generation is investigated accordingly. Subsequently, a… More >

  • Open Access

    ARTICLE

    Aerodynamic Features of High-Speed Maglev Trains with Different Marshaling Lengths Running on a Viaduct under Crosswinds

    Zun-Di Huang1, Zhen-Bin Zhou1,2,3, Ning Chang1, Zheng-Wei Chen2,3,*, Su-Mei Wang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 975-996, 2024, DOI:10.32604/cmes.2024.047664 - 16 April 2024

    Abstract The safety and stability of high-speed maglev trains traveling on viaducts in crosswinds critically depend on their aerodynamic characteristics. Therefore, this paper uses an improved delayed detached eddy simulation (IDDES) method to investigate the aerodynamic features of high-speed maglev trains with different marshaling lengths under crosswinds. The effects of marshaling lengths (varying from 3-car to 8-car groups) on the train’s aerodynamic performance, surface pressure, and the flow field surrounding the train were investigated using the three-dimensional unsteady compressible Navier-Stokes (N-S) equations. The results showed that the marshaling lengths had minimal influence on the aerodynamic performance… More > Graphic Abstract

    Aerodynamic Features of High-Speed Maglev Trains with Different Marshaling Lengths Running on a Viaduct under Crosswinds

Displaying 1-10 on page 1 of 5. Per Page