Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (36)
  • Open Access

    ARTICLE

    MICROPOLAR FLUID FLOW OVER A NONLINEAR STRETCHING CONVECTIVELY HEATED VERTICAL SURFACE IN THE PRESENCE OF CATTANEO-CHRISTOV HEAT FLUX AND VISCOUS DISSIPATION

    Machireddy Gnaneswara Reddya,*, Gorla Rama Subba Reddyb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.20

    Abstract The objective of the present communication is to study the problem of micropolar fluid flow with temperature dependent thermal conductivity over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model and Joule heating effects are properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton’s methods are More >

  • Open Access

    ARTICLE

    MHD NANOFLUID FLOW WITH VISCOUS DISSIPATION AND JOULE HEATING THROUGH A PERMEABLE CHANNEL

    Habib-Olah Sayehvanda , Shirley Abelmanb,*, Amir Basiri Parsaa

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.30

    Abstract Magnetohydrodynamic (MHD) nanofluid flow considered to be steady, incompressible and electrically conducting, flows through permeable plates in the presence of convective heating, models as a system of nonlinear partial differential equations which are solved analytically by the Differential Transform Method (DTM). Copper, aluminum oxide and titanium dioxide nanoparticles are considered with Carboxyl Methyl Cellulose (CMC)– water as the base fluid. Variation of the effects of pertinent parameters on fluid velocity and temperature is analyzed parametrically. Verification between analytical (DTM) and numerical (fourth-order Runge-Kutta scheme) results and previous published research is shown to be quite agreeable. More >

  • Open Access

    ARTICLE

    EFFECT OF NONLINEAR THERMAL RADIATION ON MAGNETOHYDRODYNAMIC WALL JET FLOW

    M. Sathish Kumar, N. Sandeep* , B. Rushi Kumar

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-6, 2017, DOI:10.5098/hmt.9.10

    Abstract An analysis is presented to analyze the momentum and heat transfer behaviour of the laminar wall jet flow of a hydromagnetic flow due to plate with nonlinear thermal radiation and convective boundary condition. The governing Partial differential equations are converted as ordinary differential equations with the aid of similarity transformation. Further, the transformed equation is resolved using the bvc5c Matlab package. The effect of various pertinent parameters on momentum and temperature fields along with the local Nusselt number is discussed with the help of numerical and graphical illustrations. It is found that the Biotnumbereffectively enhances More >

  • Open Access

    ARTICLE

    NUMERICAL SOLUTION ON HEAT TRANSFER MAGNETOHYDRODYNAMIC FLOW OF MICROPOLAR CASSON FLUID OVER A HORIZONTAL CIRCULAR CYLINDER WITH THERMAL RADIATION

    Hamzeh T. Alkasasbeh*

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.32

    Abstract This paper focuses on the numerical solution for magnetohydrodynamic (MHD) flow of micropolar Casson fluid with thermal radiation over a horizontal circular cylinder. The nonlinear partial differential equations of the boundary layer are first transformed into a non-dimensional form and then solved numerically using an implicit finite difference scheme known as Keller-box method. The The effects of the emerging parameters, namely Casson fluid parameter, magnetic parameter, radiation parameter and micropolar parameter on the local Nusselt number and the local skin friction coefficient, as well as the temperature, velocity and angular velocity profiles are shown graphically More >

  • Open Access

    ARTICLE

    MULTIPLE SLIPS AND CHEMICAL REACTION EFFECTS ON MHD STAGNATION POINT FLOW OF CASSON FLUID OVER A STRETCHING SHEET WITH VISCOUS AND JOULES HEATING

    G. Vinod Kumar, R. V. M. S. S. Kiran Kumar* , S. V. K. Varma

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-8, 2018, DOI:10.5098/hmt.10.23

    Abstract The steady boundary layer stagnation flow of a Casson fluid over a stretching sheet with slips boundary conditions in the presence of viscous dissipation, Joule heating and the first order destructive chemical reaction is analyzed. The governing flow problem is based on momentum equation, energy equation, and mass diffusion equation and these are further simplified with the help of similarity transformations. The reduced, resulting highly nonlinear coupled ordinary differential equations are solved using the Matlab bvp4c package. The effects of various parameters on the dimensionless velocity, temperature, and concentration as well as on the skin More >

  • Open Access

    ARTICLE

    HOMOTOPY ANALYSIS FOR MHD HIEMENZ FLOW IN A POROUS MEDIUM WITH THERMAL RADIATION, VELOCITY AND THERMAL SLIPS EFFECTS

    Nasreen Bano∗,† , B. B. Singh, S. R. Sayyed

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.14

    Abstract The present study deals with the two dimensional steady laminar forced MHD Hiemenz flow past a flat plate in a porous medium. The effects of thermal radiation and partial slips on the flow field have been investigated under the variable wall temperature condition of the plate. The governing equations have been transformed into a set of coupled non-linear ordinary differential equations (ODEs) by using suitable similarity transformations. These equations have been solved analytically by using homotopy analysis method (HAM). The effects of Prandtl number, suction/blowing parameter, permeability parameter, velocity slip parameter, radiation parameter, magnetic parameter, More >

  • Open Access

    ARTICLE

    MHD FLOW IN A CIRCULAR HORIZONTAL PIPE UNDER HEAT SOURCE/SINK WITH SUCTION/INJECTION ON WALL

    G. Nagarajua,∗ , Mahesh Garvandhab, J.V. Ramana Murthyc

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-8, 2019, DOI:10.5098/hmt.13.6

    Abstract This paper analyzes a hypothesis of the 2−dimensional thermal transport behavior of Newtonian axisymmetric, viscous heating flow in a horizontal pipe. The flow is subjected to an externally applied uniform suction across the pipe wall in the polar direction, a constant magnetic field perpendicular to the wall and a uniform heat source/sink on the surface of the cylinder. The thermal boundary condition is imposed as a uniform heat flux. The Velocity fields are expressed in terms of stream function and the solution is obtained using the homotopy analysis method (HAM). Graphs are designed to analyze More >

  • Open Access

    ARTICLE

    NUMERICAL SOLUTION OF THE EFFECTS OF HEAT AND MASS TRANSFER ON UNSTEADY MHD FREE CONVECTION FLOW PAST AN INFINITE VERTICAL PLATE

    D. Santhi Kumaria,*, Venkata Subrahmanyam Sajjaa, P. M. Kishoreb,†

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-10, 2021, DOI:10.5098/hmt.16.24

    Abstract This study attempts to explore a qualitative analysis of the effects of Soret on an unsteady magnetohydrodynamics free convection flow of a chemically reacting incompressible fluid past an infinite vertical plate embedded in a porous medium taking the source of heat and thermal radiation into account as well as viscous dissipation. The central equations are scrupulously converted into sets of coupled nonlinear partial differential equations for providing logical solutions. The method of Galerkin finite element is used considering appropriate boundary conditions for diverse physical metrics and then numerically analyzed employing MATLAB. A significant change in More >

  • Open Access

    ARTICLE

    STEADY MHD FLOW OVER A YAWED CYLINDER WITH MASS TRANSFER

    A. Sahaya Jenifera , P. Saikrishnana,*, J. Rajakumarb

    Frontiers in Heat and Mass Transfer, Vol.17, pp. 1-8, 2021, DOI:10.5098/hmt.17.4

    Abstract This paper examines the steady magnetohydrodynamic (MHD) flow of water over a yawed cylinder with variable fluid properties and non-uniform mass transfer. The impact of viscous dissipation is taken into consideration. The velocity and temperature fields are governed by coupled nonlinear partial differential equations together with boundary constraints. These governing equations are converted to dimensionless form with suitable non-similar transformations and then solved using an implicit finite difference method and the quasi-linearization technique. The results indicate that the yaw angle enhancement declines the skin friction coefficient in the axial direction and the heat transfer coefficient. More >

  • Open Access

    ARTICLE

    CASSON FLUID FLOW DUE TO STRETCHING SHEET WITH MAGNETIC EFFECT AND VARIABLE THERMAL CONDUCTIVITY

    M. Y. Dhangea,*, G. C. Sankada, Ishwar Maharudrappab

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-6, 2022, DOI:10.5098/hmt.18.36

    Abstract The present paper investigates the impacts of heat transfer and magnetic field on the boundary layer flow of Casson fluid over a linearly stretching sheet. The researchers have introduced analytical and numerical solutions for the momentum and energy equations by transforming the equations into the system of ordinary differential equations with the aid of the similarity transformations technique. The velocity and temperature profiles for pertinent constraints like Casson fluid constraint, Chandrasekhar number, Prandtl number, and thermal conductivity are presented through graphs. The influence of the wall shear stress and the Prandtl number increases while the… More >

Displaying 11-20 on page 2 of 36. Per Page