Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (89)
  • Open Access

    ARTICLE

    Influence of Porous Coke on Flow and Heat Transfer Characteristics of Supercritical RP-3

    Yu Zhang1, Shang-Zhen Yu2, Jia-Jia Yu2,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1151-1169, 2025, DOI:10.32604/fdmp.2025.057804 - 30 May 2025

    Abstract RP-3 is a kind of aviation kerosene commonly used in hypersonic and scramjet engines due to its superior thermal stability, high energy density, and ability to act as a coolant before combustion. However, it is known that coke can be generated during the cooling process as a carbonaceous deposition on metal walls and its effects on the cooling performance are still largely unknown. To explore the influence mechanism of porous coke on heat transfer characteristics of supercritical RP-3 in the regenerative cooling channel, a series of computational simulations were conducted via a three-dimensional CFD… More >

  • Open Access

    REVIEW

    Smoothed Particle Hydrodynamics (SPH) Simulations of Drop Evaporation: A Comprehensive Overview of Methods and Applications

    Leonardo Di G. Sigalotti*, Carlos A. Vargas

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2281-2337, 2025, DOI:10.32604/cmes.2025.060497 - 03 March 2025

    Abstract The evaporation of micrometer and millimeter liquid drops, involving a liquid-to-vapor phase transition accompanied by mass and energy transfer through the liquid-vapor interface, is encountered in many natural and industrial processes as well as in numerous engineering applications. Therefore, understanding and predicting the dynamics of evaporating flows have become of primary importance. Recent efforts have been addressed using the method of Smoothed Particle Hydrodynamics (SPH), which has proven to be very efficient in correctly handling the intrinsic complexity introduced by the multiscale nature of the evaporation process. This paper aims to provide an overview of… More > Graphic Abstract

    Smoothed Particle Hydrodynamics (SPH) Simulations of Drop Evaporation: A Comprehensive Overview of Methods and Applications

  • Open Access

    ARTICLE

    Influence of Microwave Power and Heating Time on the Drying Kinetics and Mechanical Properties of Eucalyptus gomphocephala Wood

    Mariam Habouria1, Sahbi Ouertani1,*, Noura Ben Mansour2, Soufien Azzouz1, Mohamed Taher Elaieb3

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 345-360, 2025, DOI:10.32604/fhmt.2024.057387 - 26 February 2025

    Abstract The aim of this paper was to characterize through experiment the moisture and temperature kinetic behavior of Eucalyptus gomphocephala wood samples using microwave heating (MWH) in two scenarios: intermittently and continuously. The mechanical properties and surface appearance of the heated samples were also investigated. Continuous and intermittent microwave drying kinetic experiments were conducted at a frequency of 2.45 GHz using a microwave laboratory oven at 300, 500, and 1000 watts. Drying rate curves indicated three distinct phases of MWH. Increasing the microwave power with a shorter drying time led to rapid increases in internal temperature and… More >

  • Open Access

    ARTICLE

    Modeling of the Adsorption Allowing for the Changing Adsorbent Activity at Various Stages of the Process

    Marat Satayev1,2,*, Abdugani Azimov2, Arnold Brener2, Nina Alekseyeva1, Zulfia Shakiryanova2

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1533-1558, 2024, DOI:10.32604/fhmt.2024.052901 - 30 October 2024

    Abstract The goal of this work is, first of all, to construct a mathematical model of the mass transfer process in porous adsorption layers, taking into account the fact that in most cases the adsorption process is carried out in non-stationary technological modes, which requires a clear description of its various stages. The scientific contribution of the novel model is based on a probability approach allowing for deriving a differential equation that takes into account the diffusion migration of adsorbed particles. Solving this equation allows us to calculate the reduced degree of the adsorption surface coverage… More >

  • Open Access

    ARTICLE

    Libration-Generated Average Convection in a Rotating Flat Layer with Horizontal Axis

    Kirill Rysin*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.10, pp. 2235-2249, 2024, DOI:10.32604/fdmp.2024.052324 - 23 September 2024

    Abstract The study of average convection in a rotating cavity subjected to modulated rotation is an interesting area for the development of both fundamental and applied science. This phenomenon finds application in the field of mass transfer and fluid flow control, relevant examples being crystal growth under reduced gravity and fluid mixing in microfluidic devices for cell cultures. In this study, the averaged flow generated by the oscillating motion of a fluid in a planar layer rotating about a horizontal axis is experimentally investigated. The boundaries of the layer are maintained at constant temperatures, while the… More >

  • Open Access

    ARTICLE

    Applying the Shearlet-Based Complexity Measure for Analyzing Mass Transfer in Continuous-Flow Microchannels

    Elena Mosheva1,*, Ivan Krasnyakov2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1743-1758, 2024, DOI:10.32604/fdmp.2024.049146 - 06 August 2024

    Abstract Continuous-flow microchannels are widely employed for synthesizing various materials, including nanoparticles, polymers, and metal-organic frameworks (MOFs), to name a few. Microsystem technology allows precise control over reaction parameters, resulting in purer, more uniform, and structurally stable products due to more effective mass transfer manipulation. However, continuous-flow synthesis processes may be accompanied by the emergence of spatial convective structures initiating convective flows. On the one hand, convection can accelerate reactions by intensifying mass transfer. On the other hand, it may lead to non-uniformity in the final product or defects, especially in MOF microcrystal synthesis. The ability… More > Graphic Abstract

    Applying the Shearlet-Based Complexity Measure for Analyzing Mass Transfer in Continuous-Flow Microchannels

  • Open Access

    ARTICLE

    Optimal Design of Drying Process of the Potatoes with Multi-Agent Reinforced Deep Learning

    Mohammad Yaghoub Abdollahzadeh Jamalabadi*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 511-536, 2024, DOI:10.32604/fhmt.2024.051004 - 20 May 2024

    Abstract Heat and mass transport through evaporation or drying processes occur in many applications such as food processing, pharmaceutical products, solar-driven vapor generation, textile design, and electronic cigarettes. In this paper, the transport of water from a fresh potato considered as a wet porous media with laminar convective dry air fluid flow governed by Darcy’s law in two-dimensional is highlighted. Governing equations of mass conservation, momentum conservation, multiphase fluid flow in porous media, heat transfer, and transport of participating fluids and gases through evaporation from liquid to gaseous phase are solved simultaneously. In this model, the… More >

  • Open Access

    ARTICLE

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al2O3-Eg and TiO2-Eg Fluids on a Stretched Surface

    K. Jyothi1, Abhishek Dasore2,3,*, R. Ganapati4, Sk. Mohammad Shareef5, Ali J. Chamkha6, V. Raghavendra Prasad7

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 79-105, 2024, DOI:10.32604/fhmt.2024.046891 - 21 March 2024

    Abstract In the current research, a thorough examination unfolds concerning the attributes of magnetohydrodynamic (MHD) boundary layer flow and heat transfer inherent to nanoliquids derived from Sisko Al2O3-Eg and TiO2-Eg compositions. Such nanoliquids are subjected to an extending surface. Consideration is duly given to slip boundary conditions, as well as the effects stemming from variable viscosity and variable thermal conductivity. The analytical approach applied involves the application of suitable similarity transformations. These conversions serve to transform the initial set of complex nonlinear partial differential equations into a more manageable assembly of ordinary differential equations. Through the utilization… More > Graphic Abstract

    Comparative Numerical Analysis of Heat and Mass Transfer Characteristics in Sisko Al<sub>2</sub>O<sub>3</sub>-Eg and TiO<sub>2</sub>-Eg Fluids on a Stretched Surface

  • Open Access

    PROCEEDINGS

    Key Transport Mechanisms in Supercritical CO2 Based Pilot Micromodels Subjected to Bottom Heat and Mass Diffusion

    Karim Ragui1, Mengshuai Chen1,2, Lin Chen1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.010378

    Abstract The ambiguous dynamics associated with heat and mass transfer of invading carbon dioxide in sub-critical and supercritical states, as well as the response of pore-scale resident fluids, play a key role in understanding CO2 capture and storage (CCUS) and the corresponding phase equilibrium mechanisms. To this end, this paper reveals the transport mechanisms of invading supercritical carbon dioxide (sCO2) in polluted micromodels using a variant of Lattice-Boltzmann Color Fluid model and descriptive experimental data. The breakthrough time is evaluated by characterizing the displacement velocity, the capillary to pressuredifference ratio, and the transient heat and mass diffusion More >

  • Open Access

    ARTICLE

    Numerical Comparison of Stagnation Point Casson Fluid Stream over Flat and Cylindrical Surfaces with Joule Heating and Chemical Reaction Impacts

    Shaik Jaffrullah1, Sridhar Wuriti1,*, Raghavendra Ganesh Ganugapati2, Srinivasa Rao Talagadadevi1

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 407-426, 2023, DOI:10.32604/fhmt.2023.043305 - 30 November 2023

    Abstract In this particular study, we have considered the flow of Casson fluid over inclined flat and cylindrical surfaces, and have conducted a numerical analysis taking into account various physical factors such as mixed convection, stagnation point flow, MHD, thermal radiation, viscous dissipation, heat generation, Joule heating effect, variable thermal conductivity and chemical reaction. Flow over flat plate phenomena is observed aerospace industry, and airflow over solar panels, etc. Cylindrical surfaces are commonly used in several applications interacting with fluids, such as bridges, cables, and buildings, so the study of fluid flow over cylindrical surfaces is… More >

Displaying 1-10 on page 1 of 89. Per Page