Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    ARTICLE

    An alternating finite difference material point method for numerical simulation of high explosive explosion problems

    X. X. Cui1, X. Zhang1,2, K. Y. Sze3, X. Zhou4

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.5, pp. 507-538, 2013, DOI:10.3970/cmes.2013.092.507

    Abstract Based on the material point method (MPM), an alternating finite difference material point (AFDMP) method is proposed for modeling the 3D high explosive (HE) explosion and its interaction with structures nearby. The initiatory detonation and eventual fluid structure interaction (FSI) are simulated by the standard MPM. On the other hand, the finite difference method (FDM) is employed to simulate the dispersion of the detonation products into the surrounding air where the particles degenerate to marker points which track the moving interface between detonation products and air. The conversion between MPM and FDM is implemented by the projection between the particles… More >

  • Open Access

    ARTICLE

    Modeling Imperfect Interfaces in the Material Point Method using Multimaterial Methods

    J. A. Nairn1

    CMES-Computer Modeling in Engineering & Sciences, Vol.92, No.3, pp. 271-299, 2013, DOI:10.32604/cmes.2013.092.271

    Abstract The “multimaterial” version of the material point method (MPM) extrapolates each material to its own velocity field on a background grid. By reconciling momenta on nodes interacting with two or more materials, MPM is able to automatically handle contact without any need for special contact elements. This paper extends multimaterial MPM to automatically handle imperfect interfaces between materials as well. The approach is to evaluate displacement discontinuity on multimaterial nodes and then add internal forces and interfacial energy determined by an imperfect interface traction law. The concept is simple, but implementation required numerous corrections to make the analysis mesh independent,… More >

  • Open Access

    ARTICLE

    Material Point Method Simulation of Equal Channel Angular Pressing Involving Large Plastic Strain and Contact Through Sharp Corners

    V. Lemiale1,2, J. Nairn3, A. Hurmane1

    CMES-Computer Modeling in Engineering & Sciences, Vol.70, No.1, pp. 41-66, 2010, DOI:10.3970/cmes.2010.070.041

    Abstract We assessed the suitability of the Material Point Method (MPM) to simulate the equal channel angular pressing technique (ECAP). This severe plastic deformation process combines several interesting and challenging features in the context of numerical simulations, namely large displacements, large plastic deformations, as well as abrupt contact changes between the rigid tools and the work piece. Moreover, ECAP has been intensively studied, experimentally, numerically and theoretically, which makes it an ideal benchmark for testing MPM. Results from finite element analysis are also presented for comparison to MPM because this method is widely considered as a robust and reliable computational technique… More >

  • Open Access

    ARTICLE

    An Alternated Grid Updating Parallel Algorithm for Material Point Method Using OpenMP

    Yantao Zhang1, Xiong Zhang1,2, Yan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.69, No.2, pp. 143-166, 2010, DOI:10.3970/cmes.2010.069.143

    Abstract Material point method(MPM) is a promising method in solving problems involving large deformations, especially explosion and penetration. In MPM, particles can move around the computing domain dynamically, which can result in load imbalance easily. In parallelizing MPM using OpenMP, data races will occur in the stage of grid node updating if we use loop-level parallelism for these loops. Huang et al. proposed a domain decomposition method to overcome data races [Huang, Zhang, Ma and Wang (2008)]. However, significant modifications of the original serial code are required. In this paper, we proposed a new alternated grid updating method to avoid data… More >

  • Open Access

    ARTICLE

    Three-Dimensional Dynamic Fracture Analysis Using the Material Point Method

    Y. J. Guo1, J. A. Nairn2

    CMES-Computer Modeling in Engineering & Sciences, Vol.16, No.3, pp. 141-156, 2006, DOI:10.3970/cmes.2006.016.141

    Abstract This paper describes algorithms for three-dimensional dynamic stress and fracture analysis using the material point method (MPM). By allowing dual velocity fields at background grid nodes, the method provides exact numerical implementation of explicit cracks in a predominantly meshless method. Crack contact schemes were included for automatically preventing crack surfaces from interpenetration. Crack-tip parameters, dynamic$J$-integral vector and mode I, II, and III stress intensity factors, were calculated from the dynamic stress solution. Comparisons to finite difference method (FDM), finite element method (FEM), and boundary element method (BEM), as well as to static theories showed that MPM can efficiently and accurately… More >

  • Open Access

    ARTICLE

    Structured Mesh Refinement in Generalized Interpolation Material Point (GIMP) Method for Simulation of Dynamic Problems

    Jin Ma, Hongbing Lu, Ranga Komanduri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.12, No.3, pp. 213-228, 2006, DOI:10.3970/cmes.2006.012.213

    Abstract The generalized interpolation material point (GIMP) method, recently developed using a C1 continuous weighting function, has solved the numerical noise problem associated with material points just crossing the cell borders, so that it is suitable for simulation of relatively large deformation problems. However, this method typically uses a uniform mesh in computation when one level of material points is used, thus limiting its effectiveness in dealing with structures involving areas of high stress gradients. In this paper, a spatial refinement scheme of the structured grid for GIMP is presented for simulations with highly localized stress gradients. A uniform structured background… More >

  • Open Access

    ARTICLE

    Simulation of the Deformation Mechanisms of Bulk Metallic Glass (BMG) Foam using the Material Point Method

    Jin Ma1, Jay C. Hanan1, Ranga Komanduri1, Hongbing Lu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.4, pp. 349-384, 2012, DOI:10.3970/cmes.2012.086.349

    Abstract Amorphous metallic foams are an exciting class of materials for an array of high impact absorption applications, the mechanical behavior of which is only beginning to be characterized. To determine mechanical properties, guide processing, and engineer the microstructure for impact absorption, simulation of the mechanical properties is necessary as experimental determination alone can be expensive and time consuming. In this investigation, the material point method (MPM) with C1 continuous shape function is used to simulate the response of a bulk metallic glass (BMG) closed-cell foam (Pd42.5Cu30Ni7.5P20) under compression. The BMG foam was also tested experimentally under compression for validation of… More >

  • Open Access

    ARTICLE

    On the Modeling of Surface Tension and its Applications by the Generalized Interpolation Material Point Method

    L. Chen1 J. H. Lee1, C.-f. Chen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.86, No.3, pp. 199-224, 2012, DOI:10.3970/cmes.2012.086.199

    Abstract This paper presents a numerical procedure to model surface tension using the Generalized Interpolation Material Point (GIMP) method which employs a background mesh in solving the equations of motion. The force due to surface tension is formulated at the mesh grid points by using the continuum surface force (CSF) model and then added to the equations of motion at each grid point. In GIMP, we use the grid mass as the color function in CSF and apply a moving average smoothing scheme to the grid mass to improve the accuracy in calculating the surface interface. The algorithm, named as GIMP-CSF,… More >

  • Open Access

    ARTICLE

    Simulation of Fragmentation with Material Point Method Based on Gurson Model and Random Failure

    Pengfei Yang1, Yan Liu1, Xiong Zhang1,2, Xu Zhou3, Yuli Zhao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.3, pp. 207-238, 2012, DOI:10.3970/cmes.2012.085.207

    Abstract The material point method is extended to the simulations of fragmentation driven by detonation. A crack modeling scheme based on contact algorithm with material failure process is developed to study the dynamic crack propagation in plastic media. When considering microscopic damage of material, the plastic behavior is described by Gurson model with randomly-distributed initial void of material points. Gurson model can degenerate to J2 plastic theory while the microscopic void is ignored, in which situation the Weibull random failure scheme will be used. Meanwhile, a background-grid-based searching method is proposed to capture the statistical feature of the fragmentation. The scaling… More >

  • Open Access

    ARTICLE

    Numerical Investigation on Dynamical Response of Aluminum Foam Subject to Hypervelocity Impact With Material Point Method

    Weiwei Gong, Yan Liu, Xiong Zhang, Honglei Ma

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.5, pp. 527-546, 2012, DOI:10.3970/cmes.2012.083.527

    Abstract Owing to its low density and good energy absorption capability, aluminum foam is an excellent protective material for spacecraft against debris impact. However, because of its complicated microstructure, it is very difficult to generate a FEM mesh accounting for the real microstructure of the alluminum foam. On the contrary, it is very easy to model three-dimensional problems with very complicated geometry with meshfree/meshless methods. Furthermore, the material point method has obvious advantages in modeling problems involving extreme large deformation problems like hypervelocity impact problem. In this paper, a three-dimensional material point model accounting for the real microsctructure of aluminum foam… More >

Displaying 11-20 on page 2 of 35. Per Page