Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (99)
  • Open Access

    ARTICLE

    Feasibility of Using Optimal Control Theory and Training-Performance Model to Design Optimal Training Programs for Athletes

    Yi Yang, Che-Yu Lin*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 2767-2783, 2025, DOI:10.32604/cmes.2025.064459 - 30 June 2025

    Abstract In order to help athletes optimize their performances in competitions while prevent overtraining and the risk of overuse injuries, it is important to develop science-based strategies for optimally designing training programs. The purpose of the present study is to develop a novel method by the combined use of optimal control theory and a training-performance model for designing optimal training programs, with the hope of helping athletes achieve the best performance exactly on the competition day while properly manage training load during the training course for preventing overtraining. The training-performance model used in the proposed optimal… More >

  • Open Access

    ARTICLE

    Investigating the Link between Ascaris Lumbricoides and Asthma in Human with Analysis of Fractal Fractional Caputo-Fabrizio of a Mathematical Model

    Manal Adil Murad1, Shayma Adil Murad2,*, Thabet Abdeljawad3,4,5,6,*, Aziz Khan3, D. K. Almutairi7

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3377-3409, 2025, DOI:10.32604/cmes.2025.064245 - 30 June 2025

    Abstract Asthma is the most common allergic disorder and represents a significant global public health problem. Strong evidence suggests a link between ascariasis and asthma. This study aims primarily to determine the prevalence of Ascaris lumbricoides infection among various risk factors, to assess blood parameters, levels of immunoglobulin E (IgE) and interleukin-4 (IL-4), and to explore the relationship between ascariasis and asthma in affected individuals. The secondary objective is to examine a fractal-fractional mathematical model that describes the four stages of the life cycle of Ascaris infection, specifically within the framework of the Caputo-Fabrizio derivative. A… More >

  • Open Access

    ARTICLE

    Mathematical Modeling of Leukemia within Stochastic Fractional Delay Differential Equations

    Ali Raza1,2,*, Feliz Minhós2,3,*, Umar Shafique4, Muhammad Mohsin5

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3411-3431, 2025, DOI:10.32604/cmes.2025.060855 - 30 June 2025

    Abstract In 2022, Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer (IARC). Leukemia is still a threat and challenge for all regions because of 46.6% infection in Asia, and 22.1% and 14.7% infection rates in Europe and North America, respectively. To study the dynamics of Leukemia, the population of cells has been divided into three subpopulations of cells susceptible cells, infected cells, and immune cells. To investigate the memory effects and uncertainty in disease progression, leukemia modeling is developed using stochastic fractional… More >

  • Open Access

    ARTICLE

    Numerical Treatments for a Crossover Cholera Mathematical Model Combining Different Fractional Derivatives Based on Nonsingular and Singular Kernels

    Seham M. AL-Mekhlafi1,*, Kamal R. Raslan2, Khalid K. Ali2, Sadam. H. Alssad2,3, Nehaya R. Alsenaideh4

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1927-1953, 2025, DOI:10.32604/cmes.2025.063971 - 30 May 2025

    Abstract This study introduces a novel mathematical model to describe the progression of cholera by integrating fractional derivatives with both singular and non-singular kernels alongside stochastic differential equations over four distinct time intervals. The model incorporates three key fractional derivatives: the Caputo-Fabrizio fractional derivative with a non-singular kernel, the Caputo proportional constant fractional derivative with a singular kernel, and the Atangana-Baleanu fractional derivative with a non-singular kernel. We analyze the stability of the core model and apply various numerical methods to approximate the proposed crossover model. To achieve this, the approximation of Caputo proportional constant fractional… More >

  • Open Access

    ARTICLE

    Mathematical Model of the Monkeypox Virus Disease via Fractional Order Derivative

    Rajagopalan Ramaswamy1,*, Gunaseelan Mani2, Deepak Kumar3, Ozgur Ege4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1843-1894, 2025, DOI:10.32604/cmes.2025.063672 - 30 May 2025

    Abstract The Department of Economic and Social Affairs of the United Nations has released seventeen goals for sustainable development and SDG No. 3 is “Good Health and Well-being”, which mainly emphasizes the strategies to be adopted for maintaining a healthy life. The Monkeypox Virus disease was first reported in 1970. Since then, various health initiatives have been taken, including by the WHO. In the present work, we attempt a fractional model of Monkeypox virus disease, which we feel is crucial for a better understanding of this disease. We use the recently introduced fractional derivative to closely… More >

  • Open Access

    ARTICLE

    SEIR Mathematical Model for Influenza-Corona Co-Infection with Treatment and Hospitalization Compartments and Optimal Control Strategies

    Muhammad Imran1,*, Brett McKinney1, Azhar Iqbal Kashif Butt2

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1899-1931, 2025, DOI:10.32604/cmes.2024.059552 - 27 January 2025

    Abstract The co-infection of corona and influenza viruses has emerged as a significant threat to global public health due to their shared modes of transmission and overlapping clinical symptoms. This article presents a novel mathematical model that addresses the dynamics of this co-infection by extending the SEIR (Susceptible-Exposed-Infectious-Recovered) framework to incorporate treatment and hospitalization compartments. The population is divided into eight compartments, with infectious individuals further categorized into influenza infectious, corona infectious, and co-infection cases. The proposed mathematical model is constrained to adhere to fundamental epidemiological properties, such as non-negativity and boundedness within a feasible region.… More >

  • Open Access

    ARTICLE

    Intelligent PID Control Method for Quadrotor UAV with Serial Humanoid Intelligence

    Linlin Zhang, Lvzhao Bai, Jianshu Liang, Zhiying Qin*, Yuejing Zhao

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1557-1579, 2024, DOI:10.32604/csse.2024.054237 - 22 November 2024

    Abstract Quadrotor unmanned aerial vehicles (UAVs) are widely used in inspection, agriculture, express delivery, and other fields owing to their low cost and high flexibility. However, the current UAV control system has shortcomings such as poor control accuracy and weak anti-interference ability to a certain extent. To address the control problem of a four-rotor UAV, we propose a method to enhance the controller’s accuracy by considering underactuated dynamics, nonlinearities, and external disturbances. A mathematical model is constructed based on the flight principles of the quadrotor UAV. We develop a control algorithm that combines humanoid intelligence with… More >

  • Open Access

    ARTICLE

    Research on Maneuver Decision-Making of Multi-Agent Adversarial Game in a Random Interference Environment

    Shiguang Hu1,2, Le Ru1,2,*, Bo Lu1,2, Zhenhua Wang3, Xiaolin Zhao1,2, Wenfei Wang1,2, Hailong Xi1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1879-1903, 2024, DOI:10.32604/cmc.2024.056110 - 15 October 2024

    Abstract The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances. This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment. It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players, as well as the impact of participants’ manipulative behaviors on the state changes of the players. A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario. Subsequently, the… More >

  • Open Access

    ARTICLE

    A Mathematical Modeling of 3D Cubical Geometry Hypothetical Reservoir under the Effect of Nanoparticles Flow Rate, Porosity, and Relative Permeability

    Mudasar Zafar1,2,3,*, Hamzah Sakidin1, Abida Hussain1, Loshini Thiruchelvam4, Mikhail Sheremet5, Iskandar Dzulkarnain3, Roslinda Nazar6, Abdullah Al-Yaari1, Rizwan Safdar7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1193-1211, 2024, DOI:10.32604/cmes.2024.049259 - 27 September 2024

    Abstract This study aims to formulate a steady-state mathematical model for a three-dimensional permeable enclosure (cavity) to determine the oil extraction rate using three distinct nanoparticles, SiO2, Al2O3, and Fe2O3, in unconventional oil reservoirs. The simulation is conducted for different parameters of volume fractions, porosities, and mass flow rates to determine the optimal oil recovery. The impact of nanoparticles on relative permeability ( and water is also investigated. The simulation process utilizes the finite volume ANSYS Fluent. The study results showed that when the mass flow rate at the inlet is low, oil recovery goes up. In addition, More >

  • Open Access

    ARTICLE

    Aggravation of Cancer, Heart Diseases and Diabetes Subsequent to COVID-19 Lockdown via Mathematical Modeling

    Fatma Nese Efil1, Sania Qureshi1,2,3, Nezihal Gokbulut1,4, Kamyar Hosseini1,3, Evren Hincal1,4,*, Amanullah Soomro2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 485-512, 2024, DOI:10.32604/cmes.2024.047907 - 16 April 2024

    Abstract The global population has been and will continue to be severely impacted by the COVID-19 epidemic. The primary objective of this research is to demonstrate the future impact of COVID-19 on those who suffer from other fatal conditions such as cancer, heart disease, and diabetes. Here, using ordinary differential equations (ODEs), two mathematical models are developed to explain the association between COVID-19 and cancer and between COVID-19 and diabetes and heart disease. After that, we highlight the stability assessments that can be applied to these models. Sensitivity analysis is used to examine how changes in… More >

Displaying 1-10 on page 1 of 99. Per Page