Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Efficient Gauss-Seidel Precoding with Parallel Calculation in Massive MIMO Systems

    Hyun-Sun Hwang1, Jae-Hyun Ro2, Chan-Yeob Park1, Young-Hwan You3, Hyoung-Kyu Song1,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 491-504, 2022, DOI:10.32604/cmc.2022.019397

    Abstract A number of requirements for 5G mobile communication are satisfied by adopting multiple input multiple output (MIMO) systems. The inter user interference (IUI) which is an inevitable problem in MIMO systems becomes controllable when the precoding scheme is used. In this paper, the horizontal Gauss-Seidel (HGS) method is proposed as precoding scheme in massive MIMO systems. In massive MIMO systems, the exact inversion of channel matrix is impractical due to the severe computational complexity. Therefore, the conventional Gauss-Seidel (GS) method is used to approximate the inversion of channel matrix. The GS has good performance by using previous calculation results as… More >

  • Open Access

    ARTICLE

    Weighted Gauss-Seidel Precoder for Downlink Massive MIMO Systems

    Jun-Yong Jang1, Won-Seok Lee1, Jae-Hyun Ro1, Young-Hawn You2, Hyoung-Kyu Song1,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1729-1745, 2021, DOI:10.32604/cmc.2021.015424

    Abstract In this paper, a novel precoding scheme based on the Gauss-Seidel (GS) method is proposed for downlink massive multiple-input multiple-output (MIMO) systems. The GS method iteratively approximates the matrix inversion and reduces the overall complexity of the precoding process. In addition, the GS method shows a fast convergence rate to the Zero-forcing (ZF) method that requires an exact invertible matrix. However, to satisfy demanded error performance and converge to the error performance of the ZF method in the practical condition such as spatially correlated channels, more iterations are necessary for the GS method and increase the overall complexity. For efficient… More >

Displaying 1-10 on page 1 of 2. Per Page