Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Impact of Dataset Size on Machine Learning Regression Accuracy in Solar Power Prediction

    S. M. Rezaul Karim1,2, Md. Shouquat Hossain1,3, Khadiza Akter1, Debasish Sarker4, Md. Moniul Kabir 2, Mamdouh Assad5,*

    Energy Engineering, Vol.122, No.8, pp. 3041-3054, 2025, DOI:10.32604/ee.2025.066867 - 24 July 2025

    Abstract Knowing the influence of the size of datasets for regression models can help in improving the accuracy of a solar power forecast and make the most out of renewable energy systems. This research explores the influence of dataset size on the accuracy and reliability of regression models for solar power prediction, contributing to better forecasting methods. The study analyzes data from two solar panels, aSiMicro03036 and aSiTandem72-46, over 7, 14, 17, 21, 28, and 38 days, with each dataset comprising five independent and one dependent parameter, and split 80–20 for training and testing. Results indicate… More > Graphic Abstract

    Impact of Dataset Size on Machine Learning Regression Accuracy in Solar Power Prediction

  • Open Access

    ARTICLE

    Interval Type-2 Fuzzy Model for Intelligent Fire Intensity Detection Algorithm with Decision Making in Low-Power Devices

    Emmanuel Lule1,2,*, Chomora Mikeka3, Alexander Ngenzi4, Didacienne Mukanyiligira5

    Intelligent Automation & Soft Computing, Vol.38, No.1, pp. 57-81, 2023, DOI:10.32604/iasc.2023.037988 - 26 January 2024

    Abstract Local markets in East Africa have been destroyed by raging fires, leading to the loss of life and property in the nearby communities. Electrical circuits, arson, and neglected charcoal stoves are the major causes of these fires. Previous methods, i.e., satellites, are expensive to maintain and cause unnecessary delays. Also, unit-smoke detectors are highly prone to false alerts. In this paper, an Interval Type-2 TSK fuzzy model for an intelligent lightweight fire intensity detection algorithm with decision-making in low-power devices is proposed using a sparse inference rules approach. A free open–source MATLAB/Simulink fuzzy toolbox integrated… More >

  • Open Access

    ARTICLE

    Integrated Approach of Brain Disorder Analysis by Using Deep Learning Based on DNA Sequence

    Ahmed Zohair Ibrahim1,*, P. Prakash2, V. Sakthivel2, P. Prabu3

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 2447-2460, 2023, DOI:10.32604/csse.2023.030134 - 21 December 2022

    Abstract In order to research brain problems using MRI, PET, and CT neuroimaging, a correct understanding of brainfunction is required. This has been considered in earlier times with the support of traditional algorithms. Deep learning process has also been widely considered in these genomics data processing system. In this research, brain disorder illness incliding Alzheimer’s disease, Schizophrenia and Parkinson’s diseaseis is analyzed owing to misdetection of disorders in neuroimaging data examined by means fo traditional methods. Moeover, deep learning approach is incorporated here for classification purpose of brain disorder with the aid of Deep Belief Networks More >

Displaying 1-10 on page 1 of 3. Per Page