Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Preparation and Properties of Polyacrylamide/Sodium Alginate Hydrogel and the Effect of Fe3+ Adsorption on Its Mechanical Performance

    Zheng Cao1,2,3,4,*, Yang Zhang2, Keming Luo2, Yinqiu Wu2, Hongxin Gao2, Junfeng Cheng2,*, Chunlin Liu2,3, Guoliang Tao2, Qingbao Guan1, Lei Zhang5

    Journal of Renewable Materials, Vol.9, No.8, pp. 1447-1462, 2021, DOI:10.32604/jrm.2021.015593

    Abstract

    The preparation and application of functional hydrogels based on natural polysaccharides have always been a hot research topic. In this study, using acrylamide (AM) monomer, N, N'-methylene bisacrylamide (MBA) as cross-linking agent, potassium persulfate (K2S2O8) as initiator, in the presence of natural polysaccharide sodium alginate (SA), the PAM/SA hydrogel was prepared by free radical polymerization. Fourier transform infrared spectroscopy (FT-IR), swelling performance tests, scanning electron microscope (SEM), thermogravimetric analysis (TGA), UV-visible spectrophotometer, mechanical property measurements were carried out to analyze the composition, morphology, and performance of the hydrogels. The swelling behavior, dye adsorption performance, and the mechanical properties of PAM/SA… More >

  • Open Access

    ARTICLE

    Experimental Study on the Mechanical Performance of Mortise-Tenon Joints Reinforced with Replaceable Flat-Steel Jackets

    Hongmin Li1,*, Hongxing Qiu2, Wenbo Wang3

    Journal of Renewable Materials, Vol.9, No.6, pp. 1111-1125, 2021, DOI:10.32604/jrm.2021.014722

    Abstract The mortise-tenon joint is an important hub transmitting and distributing external loads for load-bearing components (beams, columns et al.) in the ancient-timber frame structure system. However, the conventional steel hoop reinforcement methods often insert wood screws into the timber components. When the reinforced joint rotates greatly, the anchoring failure of the screws will cause damage to the timber joint. To solve this problem, this study proposes a detachable and replaceable non-destructive flat-steel jacket reinforcement method in which horizontal flat steel is placed in the center of the joint, and the bolt is extended to the outside of the timber beam.… More >

  • Open Access

    ARTICLE

    Bio-Based Hyperbranched Toughener From Tannic Acid and Its Enhanced Solvent-Free Epoxy Resin with High Performance

    Jie Xu1,3, Jiayao Yang1, Peng Lin2, Xiaohuan Liu1,*, Jinjie Zhang1, Shenyuan Fu1,*, Yuxun Tang2,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1333-1346, 2019, DOI:10.32604/jrm.2019.07905

    Abstract It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin; however, this has remained a huge challenge. Herein, an eco-friendly, low-cost, and facile-fabricated bio-based hyperbranched toughener, carboxylic acid-functionalized tannic acid (CATA), was successfully prepared and applicated to the preparation of solvent-free epoxy resins. The mechanical performance, morphology, structural characterization, and thermal characterization of toughened epoxy resin system were studied. The toughened epoxy resin system with only 1.0wt% CATA reached the highest impact strength, 111% higher than the neat epoxy resin system. Notably, the tensile strength and elongation at break of toughened epoxy resin systems increased moderately… More >

  • Open Access

    ARTICLE

    Physicochemical and Mechanical Performances of Technical Flax Fibers and Biobased Composite Material: Effects of Flax Transformation Process

    M. Khennache1,*, A. Mahieu1, M. Ragoubi1, S. Taibi1, C. Poilâne2, N. Leblanc1

    Journal of Renewable Materials, Vol.7, No.9, pp. 821-838, 2019, DOI:10.32604/jrm.2019.06772

    Abstract In France, the use of flax fibers as reinforcement in composite materials is growing exponentially in the automotive sector, thanks to their good physicochemical properties, environmental reasons, health neutrality and due to the European Council Directives on the reuse, recycling and valorization of car components and materials. The aim of our study is to investigate biochemical, physicochemical, and mechanical properties of technical flax fibers to evaluate the impact of transformation processes (scutching, hackling, and homogenization) on final properties of associated composite materials. Different chemical analysis such as Van Soest (biochemical fraction measurement), FTIR (Fourier Transform InfraRed spectroscopy), and XRD (X-ray… More >

  • Open Access

    ARTICLE

    Effect of Plaque Composition on Biomechanical Performance of a Carotid Stent: Computational Study

    Xinyang Cui1, Qingshuai Ren1,2, Zihao Li1, Kun Peng1, Gaoyang Li1,3, Zhaoyong Gu1, Aike Qiao1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.3, pp. 455-469, 2018, DOI: 10.31614/cmes.2018.04135

    Abstract Clinical application of bare metal stents is constrained by the occurrence of in-stent restenosis, mainly due to the complex biomechanical environment in the body. Numerical simulation method was used to evaluate the effect of plaque composition on stent performance in a carotid artery. CT angiography (CTA) data were used as a reference, and zero-load state of the carotid artery was used to establish a 3D stenotic artery model. Different plaque compositions, calcified and hypo-cellular were defined in Model 1 and Model 2, respectively. Interactions between the stents and arterial tissues within the stent crimping-expansion process were analyzed to explore the… More >

  • Open Access

    ARTICLE

    A Generalized FEM Model for Fiber Structural and Mechanical Performance in Fabrication of Slender Yarn Structures

    Sheng Yan Li1, Bin Gang Xu1,2, Xiao Ming Tao1, Hong Hu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.1, pp. 33-56, 2011, DOI:10.3970/cmes.2011.077.033

    Abstract Slender yarn structure made from natural fibers, nano-fibers, carbon nanotubes or other types of fibrous materials is all formed by twisting an assembly of short or long fibers and its performance is significantly influenced by the physical behavior of these fibers in the slender yarn forming region - a small triangle area called spinning triangle. In this paper, a new generalized FEM model of spinning triangle has been developed to theoretically analyze the fiber structural and mechanical performance in fabrication of these slender yarn structures. In this proposed model, a geometrical model of spinning triangle is developed and the initial… More >

  • Open Access

    ARTICLE

    From Ordered to Disordered: The Effect of Microstructure on Composite Mechanical Performance

    L.B. Borkowski1, K.C. Liu1, A. Chattopadhyay1

    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 161-193, 2013, DOI:10.3970/cmc.2013.037.161

    Abstract The microstructural variation in fiber-reinforced composites has a direct relationship with its local and global mechanical performance. When micromechanical modeling techniques for unidirectional composites assume a uniform and periodic arrangement of fibers, the bounds and validity of this assumption must be quantified. The goal of this research is to quantify the influence of microstructural randomness on effective homogeneous response and local inelastic behavior. The results indicate that microstructural progression from ordered to disordered decreases the tensile modulus by 5%, increases the shear modulus by 10%, and substantially increases the magnitude of local inelastic fields. The experimental and numerical analyses presented… More >

Displaying 11-20 on page 2 of 17. Per Page