Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access


    Short-Term Shear Stress Induces Rapid Actin Dynamics in Living Endothelial Cells

    Colin K. Choi*, Brian P. Helmke∗,†

    Molecular & Cellular Biomechanics, Vol.5, No.4, pp. 247-258, 2008, DOI:10.3970/mcb.2008.005.247

    Abstract Hemodynamic shear stress guides a variety of endothelial phenotype characteristics, including cell morphology, cytoskeletal structure, and gene expression profile. The sensing and processing of extracellular fluid forces may be mediated by mechanotransmission through the actin cytoskeleton network to intracellular locations of signal initiation. In this study, we identify rapid actin-mediated morphological changes in living subconfluent and confluent bovine aortic endothelial cells (ECs) in response to onset of unidirectional steady fluid shear stress (15 dyn/cm2). After flow onset, subconfluent cells exhibited dynamic edge activity in lamellipodia and small ruffles in the downstream and side directions for the… More >

Displaying 1-10 on page 1 of 1. Per Page