Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (214)
  • Open Access


    A Heuristic Radiomics Feature Selection Method Based on Frequency Iteration and Multi-Supervised Training Mode

    Zhigao Zeng1,2, Aoting Tang1,2, Shengqiu Yi1,2, Xinpan Yuan1,2, Yanhui Zhu1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2277-2293, 2024, DOI:10.32604/cmc.2024.047989

    Abstract Radiomics is a non-invasive method for extracting quantitative and higher-dimensional features from medical images for diagnosis. It has received great attention due to its huge application prospects in recent years. We can know that the number of features selected by the existing radiomics feature selection methods is basically about ten. In this paper, a heuristic feature selection method based on frequency iteration and multiple supervised training mode is proposed. Based on the combination between features, it decomposes all features layer by layer to select the optimal features for each layer, then fuses the optimal features More >

  • Open Access


    A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification

    Tsu-Yang Wu1,2, Haonan Li2, Saru Kumari3, Chien-Ming Chen1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 19-46, 2024, DOI:10.32604/cmc.2024.048347

    Abstract Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a significant challenge. In response to this challenge, a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm (AFLA-SCNN) is proposed. The Adaptive Fick’s Law Algorithm (AFLA) constitutes a novel metaheuristic algorithm introduced herein, encompassing three new strategies: Adaptive weight factor, Gaussian mutation, and probability update policy. With adaptive weight factor, the algorithm can adjust the weights according to the change in the number of iterations to improve the performance of the algorithm. Gaussian… More >

  • Open Access


    Predicting Rock Burst in Underground Engineering Leveraging a Novel Metaheuristic-Based LightGBM Model

    Kai Wang1, Biao He2,*, Pijush Samui3, Jian Zhou4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 229-253, 2024, DOI:10.32604/cmes.2024.047569

    Abstract Rock bursts represent a formidable challenge in underground engineering, posing substantial risks to both infrastructure and human safety. These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock, leading to severe seismic events and structural damage. Therefore, the development of reliable prediction models for rock bursts is paramount to mitigating these hazards. This study aims to propose a tree-based model—a Light Gradient Boosting Machine (LightGBM)—to predict the intensity of rock bursts in underground engineering. 322 actual rock burst cases are collected to constitute an exhaustive… More >

  • Open Access


    Hybrid Optimization Algorithm for Handwritten Document Enhancement

    Shu-Chuan Chu1, Xiaomeng Yang1, Li Zhang2, Václav Snášel3, Jeng-Shyang Pan1,4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3763-3786, 2024, DOI:10.32604/cmc.2024.048594

    Abstract The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance; however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. More >

  • Open Access


    MOALG: A Metaheuristic Hybrid of Multi-Objective Ant Lion Optimizer and Genetic Algorithm for Solving Design Problems

    Rashmi Sharma1, Ashok Pal1, Nitin Mittal2, Lalit Kumar2, Sreypov Van3, Yunyoung Nam3,*, Mohamed Abouhawwash4,5

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3489-3510, 2024, DOI:10.32604/cmc.2024.046606

    Abstract This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm (MOALO) which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm (ALO) and the Genetic Algorithm (GA). MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions. The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO. A first-time hybrid of these… More >

  • Open Access


    Prediction of Ground Vibration Induced by Rock Blasting Based on Optimized Support Vector Regression Models

    Yifan Huang1, Zikang Zhou1,2, Mingyu Li1, Xuedong Luo1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3147-3165, 2024, DOI:10.32604/cmes.2024.045947

    Abstract Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management. In this study, Tuna Swarm Optimization (TSO), Whale Optimization Algorithm (WOA), and Cuckoo Search (CS) were used to optimize two hyperparameters in support vector regression (SVR). Based on these methods, three hybrid models to predict peak particle velocity (PPV) for bench blasting were developed. Eighty-eight samples were collected to establish the PPV database, eight initial blasting parameters were chosen as input parameters for the prediction model, and the PPV was the output parameter. As predictive performance evaluation indicators, the coefficient of More >

  • Open Access


    Synergistic Swarm Optimization Algorithm

    Sharaf Alzoubi1, Laith Abualigah2,3,4,5,6,7,8,*, Mohamed Sharaf9, Mohammad Sh. Daoud10, Nima Khodadadi11, Heming Jia12

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2557-2604, 2024, DOI:10.32604/cmes.2023.045170

    Abstract This research paper presents a novel optimization method called the Synergistic Swarm Optimization Algorithm (SSOA). The SSOA combines the principles of swarm intelligence and synergistic cooperation to search for optimal solutions efficiently. A synergistic cooperation mechanism is employed, where particles exchange information and learn from each other to improve their search behaviors. This cooperation enhances the exploitation of promising regions in the search space while maintaining exploration capabilities. Furthermore, adaptive mechanisms, such as dynamic parameter adjustment and diversification strategies, are incorporated to balance exploration and exploitation. By leveraging the collaborative nature of swarm intelligence and More >

  • Open Access


    Correction: Learning-Based Metaheuristic Approach for Home Healthcare Optimization Problem

    Mariem Belhor1,2,3, Adnen El-Amraoui1,*, Abderrazak Jemai2, François Delmotte1

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 271-271, 2024, DOI:10.32604/csse.2023.048573

    Abstract This article has no abstract. More >

  • Open Access


    A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems

    Elif Varol Altay, Osman Altay, Yusuf Özçevik*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 1039-1094, 2024, DOI:10.32604/cmes.2023.029404

    Abstract Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve. Such design problems are widely experienced in many engineering fields, such as industry, automotive, construction, machinery, and interdisciplinary research. However, there are established optimization techniques that have shown effectiveness in addressing these types of issues. This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues. The algorithms used in the study are listed as: transient search optimization (TSO), equilibrium optimizer (EO), grey wolf optimizer… More >

  • Open Access


    SCChOA: Hybrid Sine-Cosine Chimp Optimization Algorithm for Feature Selection

    Shanshan Wang1,2,3, Quan Yuan1, Weiwei Tan1, Tengfei Yang1, Liang Zeng1,2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3057-3075, 2023, DOI:10.32604/cmc.2023.044807

    Abstract Feature Selection (FS) is an important problem that involves selecting the most informative subset of features from a dataset to improve classification accuracy. However, due to the high dimensionality and complexity of the dataset, most optimization algorithms for feature selection suffer from a balance issue during the search process. Therefore, the present paper proposes a hybrid Sine-Cosine Chimp Optimization Algorithm (SCChOA) to address the feature selection problem. In this approach, firstly, a multi-cycle iterative strategy is designed to better combine the Sine-Cosine Algorithm (SCA) and the Chimp Optimization Algorithm (ChOA), enabling a more effective search… More >

Displaying 1-10 on page 1 of 214. Per Page