Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Coupling Multi-Source Satellite Remote Sensing and Meteorological Data to Discriminate Yellow Rust and Fusarium Head Blight in Winter Wheat

    Qi Sheng1, Huiqin Ma1,*, Jingcheng Zhang1, Zhiqin Gui1, Wenjiang Huang2,3, Dongmei Chen1, Bo Wang1

    Phyton-International Journal of Experimental Botany, Vol.94, No.2, pp. 421-440, 2025, DOI:10.32604/phyton.2025.060152 - 06 March 2025

    Abstract Yellow rust (Puccinia striiformis f. sp. Tritici, YR) and fusarium head blight (Fusarium graminearum, FHB) are the two main diseases affecting wheat in the main grain-producing areas of East China, which is common for the two diseases to appear simultaneously in some main production areas. It is necessary to discriminate wheat YR and FHB at the regional scale to accurately locate the disease in space, conduct detailed disease severity monitoring, and scientific control. Four images on different dates were acquired from Sentinel-2, Landsat-8, and Gaofen-1 during the critical period of winter wheat, and 22 remote sensing features that… More >

  • Open Access

    ARTICLE

    XGBoost-Based Power Grid Fault Prediction with Feature Enhancement: Application to Meteorology

    Kai Liu1, Meizhao Liu1, Ming Tang1, Chen Zhang2,*, Junwu Zhu2,3,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2893-2908, 2025, DOI:10.32604/cmc.2024.057074 - 17 February 2025

    Abstract The prediction of power grid faults based on meteorological factors is of great significance to reduce economic losses caused by power grid faults. However, the existing methods fail to effectively extract key features and accurately predict fault types due to the complexity of meteorological factors and their nonlinear relationships. In response to these challenges, we propose the Feature-Enhanced XGBoost power grid fault prediction method (FE-XGBoost). Specifically, we first combine the gradient boosting decision tree and recursive feature elimination method to extract essential features from meteorological data. Then, we incorporate a piecewise linear chaotic map to More >

  • Open Access

    ARTICLE

    Wind Energy Data Analysis and Resource Mapping of Dangla, Gojjam, Ethiopia

    Belayneh Yitayew1,*, Wondwossen Bogale2

    Energy Engineering, Vol.119, No.6, pp. 2513-2532, 2022, DOI:10.32604/ee.2022.018961 - 14 September 2022

    Abstract Energy is one of the most important factors in socio-economic development. The rapid increase in energy demand and air pollution has increased the number of ways to generate energy in the power sector. Currently, wind energy capacity in Ethiopia is estimated at 10,000 MW. Of these, however, only eight percent of its capacity has been used in recent years. One of the reasons for the low use of wind energy is the lack of accurate wind atlases in the country. Therefore, the purpose of this study is to develop an accurate wind atlas and review… More >

  • Open Access

    ARTICLE

    Modelling the ZR Relationship of Precipitation Nowcasting Based on Deep Learning

    Jianbing Ma1,*, Xianghao Cui1, Nan Jiang2

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1939-1949, 2022, DOI:10.32604/cmc.2022.025206 - 24 February 2022

    Abstract Sudden precipitations may bring troubles or even huge harm to people's daily lives. Hence a timely and accurate precipitation nowcasting is expected to be an indispensable part of our modern life. Traditionally, the rainfall intensity estimation from weather radar is based on the relationship between radar reflectivity factor (Z) and rainfall rate (R), which is typically estimated by location-dependent experiential formula and arguably uncertain. Therefore, in this paper, we propose a deep learning-based method to model the ZR relation. To evaluate, we conducted our experiment with the Shenzhen precipitation dataset. We proposed a combined method More >

Displaying 1-10 on page 1 of 4. Per Page