Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access


    MicroRNA-133b Inhibits Cell Proliferation and Invasion in Osteosarcoma by Targeting Sirt1

    Shi Ying*, Huang Jianjun, Yi Xue*, Yu Shuwei*, Zhang Liyuan*, Wang Jie*, Cheng Lixian*

    Oncology Research, Vol.25, No.9, pp. 1421-1430, 2017, DOI:10.3727/096504016X14826089198805

    Abstract MicroRNAs are a class of small noncoding RNAs that function as critical gene regulators through targeting mRNAs for translational repression or degradation. In this study, we showed that the miR-133b expression level was decreased while the Sirt1 mRNA expression level was increased in osteosarcoma tissue and cell lines. A low expression of miR-133b was significantly associated with tumor size, distant metastasis, and advanced clinical stage. In addition, osteosarcoma patients with a low miR-133b expression showed a worse prognosis when compared to those with a high level of miR-133b expression. Thus, we identified Sirt1 as a More >

  • Open Access


    miR-133b Inhibits Cell Growth, Migration, and Invasion by Targeting MMP9 in Non-Small Cell Lung Cancer

    Yan Zhen*1, Jia Liu*†1, Yujie Huang*†1, Yajun Wang*, Wen Li*†, Jun Wu*†

    Oncology Research, Vol.25, No.7, pp. 1109-1116, 2017, DOI:10.3727/096504016X14800889609439

    Abstract Although increasing evidence indicates that the deregulation of microRNAs (miRNAs) contributes to tumorigenesis and invasion, little is known about the role of miR-133b in human non-small cell lung cancer (NSCLC). In the present study, we revealed that the introduction of miR-133b dramatically suppressed NSCLC cell growth, migration, and invasion in vitro. On the contrary, miR-133b inhibitors promoted cell growth, migration, and invasion in vitro. Further studies revealed that matrix metallopeptidase 9 (MMP9) is a direct target gene of miR-133b. Silencing MMP9 inhibited cell growth, migration, and invasion of NSCLC cells, which was consistent with the More >

  • Open Access


    Dihydroartemisinin ameliorates palmitate-induced apoptosis in cardiomyocytes via regulation on miR-133b/Sirt1 axis


    BIOCELL, Vol.46, No.4, pp. 989-998, 2022, DOI:10.32604/biocell.2022.018014

    Abstract Excessive fat ectopically deposited in the non-adipose tissues is considered as one of the leading causes of myopathy. The aim of this study was to investigate the role of Dihydroartemisinin (DHA) in palmitate (PAL)-incubated H9c2 cells (lipotoxicity-induced cell injury model). Cell viability of PAL-treated cells was determined by MTT assay, and apoptotic regulators were examined by qRT-PCR and western blot analysis, in the absence or in the presence of DHA, respectively. Expression levels of miR-133b and Sirt1 were also evaluated by qRT-PCR and western blotting examination. PAL decreased the viability of H9c2 cells and enhanced More >

Displaying 1-10 on page 1 of 3. Per Page