Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access


    Microfluidic methods used in exosome isolation


    BIOCELL, Vol.47, No.5, pp. 959-964, 2023, DOI:10.32604/biocell.2023.028371

    Abstract Exosomes are important biomarkers for clinical diagnosis. It is critical to isolate secreted exosomes from bodily fluids such as blood, saliva, breast milk, and urine for liquid biopsy applications. The field of microfluidics provides numerous benefits for biosample processing, diagnostics, and prognostics. Several microfluidics-based methods have been employed for the isolation and purification of exosomes in the last ten years. These microfluidic methods can be grouped into two categories based on passive and active isolation mechanisms. In the first group, inertial and hydrodynamic forces are employed to separate exosomes based on their size differences. In the second group, external forcefields… More >

  • Open Access


    Computational Fluid Dynamics Simulations at Micro-Scale Stenosis for Microfluidic Thrombosis Model Characterization

    Yunduo Charles Zhao1,2,#, Parham Vatankhah1,#, Tiffany Goh1,2,3, Jiaqiu Wang4, Xuanyi Valeria Chen1, Moein Navvab Kashani5,6, Keke Zheng7, Zhiyong Li4, Lining Arnold Ju1,2,3,*

    Molecular & Cellular Biomechanics, Vol.18, No.1, pp. 1-10, 2021, DOI:10.32604/mcb.2021.012598

    Abstract Platelet aggregation plays a central role in pathological thrombosis, preventing healthy physiological blood flow within the circulatory system. For decades, it was believed that platelet aggregation was primarily driven by soluble agonists such as thrombin, adenosine diphosphate and thromboxane A2. However, recent experimental findings have unveiled an intriguing but complementary biomechanical mechanism—the shear rate gradients generated from flow disturbance occurring at sites of blood vessel narrowing, otherwise known as stenosis, may rapidly trigger platelet recruitment and subsequent aggregation. In our Nature Materials 2019 paper [1], we employed microfluidic devices which incorporated micro-scale stenoses to elucidate the molecular insights underlying the… More >

  • Open Access


    Computational Microfluidic Channel for Separation of Escherichia coli from Blood-Cells

    Chinnapalli Likith Kumar1,*, A. Vimala Juliet1, Bandaru Ramakrishna2, Shubhangi Chakraborty1, Mazin Abed Mohammed3, Kalakanda Alfred Sunny4

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1369-1384, 2021, DOI:10.32604/cmc.2021.015116

    Abstract Microfluidic channels play a vital role in separation of analytes of interest such as bacteria and platelet cells, etc., in various biochemical diagnosis procedures including urinary tract infections (UTI) and bloodstream infections. This paper presents the multi physics computational model specifically designed to study the effects of design parameters of a microfluidics channel for the separation of Escherichia coli (E. coli) from various blood constituents including red blood cells (RBC) and platelets. A standard two inlet and a two outlet microchannel of length 805 m with a channel width of 40 m is simulated. The effect of electrode potentials and… More >

  • Open Access


    The Dependence of Diffusio-Phoretic Mobility and Aggregation Properties of Proteins on Intermolecular Interaction in Confined System

    Jiachen Wei1,2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 103-104, 2019, DOI:10.32604/mcb.2019.07721

    Abstract Phoretic flow can be generated by different types of gradient (e.g. temperature, concentration, or charge gradient) [1-3]. Within micro-to-nano confined system, the diffusio-phoretic property for proteins differs dramatically from that obtained in bulk condition, due to concentration fluctuation that emerges at microscopic level induced by specific and nonspecific interactions between protein and co-solute [4-5]. The phoretic mobility of protein individuals and complex in solute gradients can be theoretically described by continuum model [1-2] that neglects microscopic heterogeneity and determined experimentally by microfluidics [6], but the underlying mechanism of diffusio-phoretic motion for confined protein still remains unclear.
    Our approach to… More >

  • Open Access


    Mechanosensing Dynmics of Red Blood Cells

    Sitong Zhou1, Jiandi Wan1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 70-70, 2019, DOI:10.32604/mcb.2019.06978

    Abstract Piezo proteins (Piezo1 and Piezo2) are recently identified mechanically activated cation channels in eukaryotic cells and associated with physiological responses to touch, pressure, and stretch. In particular, human RBCs express Piezo1 on their membranes, and mutations of Piezo1 have been linked to hereditary xerocytosis. To date, however, physiological functions of Piezo1 on normal RBCs remain poorly understood. Here, we show that Piezo1 regulates mechanotransductive release of ATP from human RBCs by controlling the shear-induced Ca2+ influx [1]. We find that, in human RBCs treated with Piezo1 inhibitors or having mutant Piezo1 channels, the amounts of shear-induced ATP release and Ca2+… More >

  • Open Access


    Computational Investigation of Droplets Behaviour inside Passive Microfluidic Oscillator

    Tawfiq Chekifi1, *, Brahim Dennai2, Rachid Khelfaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 173-187, 2017, DOI:10.3970/fdmp.2017.013.173

    Abstract Recently, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops and many other functions. In this paper, we suggest a numerical CFD study of microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous droplets of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator. Droplets production is computed by volume-of-fluid method (VOF). Flow oscillations of droplets were triggered by the Coanda effect of jet flow. The aim of work is… More >

  • Open Access


    Elaboration of Materials with Functionality Gradients by Assembly of Chitosan-Collagen Microspheres Produced by Microfluidics

    David Azria1,2, Raluca Guermache1,2, Sophie Raisin1, Sébastien Blanquer1, Frédéric Gobeaux3, Marie Morille1, Emmanuel Belamie1,2,*

    Journal of Renewable Materials, Vol.6, No.3, pp. 314-324, 2018, DOI:10.7569/JRM.2017.634186

    Abstract Biopolymers extracted from renewable resources like chitosan and collagen exhibit interesting properties for the elaboration of materials designed for tissue engineering applications, among which are their hydrophilicity, biocompatibility and biodegradability. In many cases, functional recovery of an injured tissue or organ requires oriented cell outgrowth, which is particularly critical for nerve regeneration. Therefore, there is a growing interest for the elaboration of materials exhibiting functionalization gradients able to guide cells. Here, we explore an original way of elaborating such gradients by assembling particles from a library of functionalized microspheres. We propose a simple process to prepare chitosan-collagen hybrid microspheres by… More >

  • Open Access


    Numerical Simulation of Fluid Induced Vibration of Graphenes at Micron Scales

    Y. Inoue1, R. Kobayashi1, S. Ogata1, T. Gotoh1

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.2, pp. 137-162, 2010, DOI:10.3970/cmes.2010.063.137

    Abstract Vibration of a single graphene and a pair of graphenes at micro meter scale induced by air flow is numerically simulated and examined by using a hybrid computational method starting from a microscopic level of description for the graphene. In order to bridge a huge gap in spatial and time scales in their motions, the carbon atoms of the graphene are represented by a small number of coarse grained particles, the fluid motion is described by the lattice Boltzmann equation and the momentum exchange at the boundary is treated by the time averaged immersed boundary method. It is found that… More >

  • Open Access


    Viscoelastic Drop Deformation in a Micro-Contraction

    Malcolm R. Davidson1, Dalton J.E. Harvie1

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 317-328, 2011, DOI:10.3970/fdmp.2011.007.317

    Abstract A volume-of-fluid numerical method, adapted by the authors [Harvie, Cooper-White and Davidson (2008)] to simulate the flow of viscoelastic fluids, is used to predict deformation of a viscoelastic droplet carried by an immiscible Newtonian liquid through an axisymmetric microfluidic contraction-expansion. Values of the capillary number and elasticity number are chosen based on corresponding values for a rectangular contraction for which a reentrant cavity at the rear of the drop and subsequent encapsulation behaviour was observed experimentally by Harvie, Cooper-White and Davidson (2008). A reentrant cavity, similar to the observed one, is predicted; however, encapsulation is not achieved. Unexpectedly, a narrow… More >

Displaying 1-10 on page 1 of 9. Per Page  

Share Link