Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (104)
  • Open Access

    ARTICLE

    Modelling of Woven Fabrics with the Discrete Element Method

    D. Ballhause1, M. König1, B. Kröplin1

    CMC-Computers, Materials & Continua, Vol.4, No.1, pp. 21-30, 2006, DOI:10.3970/cmc.2006.004.021

    Abstract The mechanical behaviour of woven fabrics is dominated by the kinematics of the constituents on the microscopic scale. Their macroscopic response usually shows non-linearities which are due to the mobility of the interlaced yarns. The major deformation mechanisms of fabrics, i.e. the crimp interchange in case of biaxial tension and the trellising motion of the yarns in case of shear, reflect the dependency of the macroscopic material behaviour on the microstructural deformation mechanisms.
    We present a novel modelling approach for woven fabrics which is capable to represent directly and locally the microstructure and its kinematics… More >

  • Open Access

    ARTICLE

    A Model to Describe the Fracture of Porous Polygranular Graphite Subject to Neutron Damage and Radiolytic Oxidation

    G. Smith1, E. Schlangen2, P.E.J. Flewitt3, A.G. Crocker4, A. Hodgkins5

    CMC-Computers, Materials & Continua, Vol.51, No.3, pp. 163-185, 2016, DOI:10.3970/cmc.2016.051.163

    Abstract Two linked models have been developed to explore the relationship between the amount of porosity arising in service from both radiolytic oxidation and fast neutron damage that influences both the strength and the force-displacement (load-displacement) behaviour and crack propagation in pile grade A graphite used as a nuclear reactor moderator material. Firstly models of the microstructure of the porous graphite for both unirradiated and irradiated graphite are created. These form the input for the second stage, simulating fracture in lattice-type finite element models, which predicts force (load)-displacement and crack propagation paths. Microstructures comprising aligned filler More >

  • Open Access

    ARTICLE

    Design, Fabrication, Characterization and Simulation of PIP-SiC/SiC Composites

    S. Zhao1, Zichun Yang1,2, X. G. Zhou3, X. Z. Ling4, L. S. Mora5, D. Khoshkhou6, J. Marrow5

    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 103-124, 2014, DOI:10.3970/cmc.2014.042.103

    Abstract Continuous SiC fiber reinforced SiC matrix composites (SiC/SiC) have been studied and developed for high temperature and fusion applications. Polymer impregnation and pyrolysis (PIP) is a conventional technique for fabricating SiC/SiC composites. In this research, KD-1 SiC fibers were employed as reinforcements, a series of coatings such as pyrocarbon (PyC), SiC and carbon nanotubes (CNTs) were synthesized as interphases, PCS and LPVCS were used as precursors and SiC/SiC composites were prepared via the PIP method. The mechanical properties of the SiC/SiC composites were characterized. Relationship between the interphase shear strength and the fracture toughness of More >

  • Open Access

    ARTICLE

    Change of Scale Strategy for the Microstructural Modelling of Polymeric Rohacell Foams

    J. Aubry1, P. Navarro1, S. Marguet1, J.-F. Ferrero1, O. Dorival2, L. Sohier3, J.-Y. Cognard3

    CMC-Computers, Materials & Continua, Vol.39, No.1, pp. 21-47, 2014, DOI:10.3970/cmc.2014.039.021

    Abstract In this paper a numerical model dedicated to the simulation of the mechanical behaviour of polymeric Rohacell foams is presented. The finite elements model is developed at the scale of the microstructure idealized by a representative unit cell: the truncated octahedron. Observations made on micrographs of Rohacell lead to mesh this representative unit cell as a lattice of beam elements. Each beam is assigned a brittle linear elastic mechanical behaviour in tension and an elastoplastic behaviour in compression. The plasticity in compression is introduced as a way to mimic the buckling of the edges of More >

  • Open Access

    ARTICLE

    From Ordered to Disordered: The Effect of Microstructure on Composite Mechanical Performance

    L.B. Borkowski1, K.C. Liu1, A. Chattopadhyay1

    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 161-193, 2013, DOI:10.3970/cmc.2013.037.161

    Abstract The microstructural variation in fiber-reinforced composites has a direct relationship with its local and global mechanical performance. When micromechanical modeling techniques for unidirectional composites assume a uniform and periodic arrangement of fibers, the bounds and validity of this assumption must be quantified. The goal of this research is to quantify the influence of microstructural randomness on effective homogeneous response and local inelastic behavior. The results indicate that microstructural progression from ordered to disordered decreases the tensile modulus by 5%, increases the shear modulus by 10%, and substantially increases the magnitude of local inelastic fields. The More >

  • Open Access

    ARTICLE

    Stochastic Macro Material Properties, Through Direct Stochastic Modeling of Heterogeneous Microstructures with Randomness of Constituent Properties and Topologies, by Using Trefftz Computational Grains (TCG)

    Leiting Dong1,2, Salah H. Gamal3, Satya N. Atluri2,4

    CMC-Computers, Materials & Continua, Vol.37, No.1, pp. 1-21, 2013, DOI:10.3970/cmc.2013.037.001

    Abstract In this paper, a simple and reliable procedure of stochastic computation is combined with the highly accurate and efficient Trefftz Computational Grains (TCG), for a direct numerical simulation (DNS) of heterogeneous materials with microscopic randomness. Material properties of each material phase, and geometrical properties such as particles sizes and distribution, are considered to be stochastic with either a uniform or normal probabilistic distributions. The objective here is to determine how this microscopic randomness propagates to the macroscopic scale, and affects the stochastic characteristics of macroscopic material properties. Four steps are included in this procedure: (1)… More >

  • Open Access

    ARTICLE

    Effect of the Strain Rate and Microstructure on Damage Growth in Aluminum

    R. R. Valisetty1, A.M. Dongare2, A.M. Rajendran3, R. R. Namburu1

    CMC-Computers, Materials & Continua, Vol.36, No.3, pp. 231-255, 2013, DOI:10.3970/cmc.2013.036.231

    Abstract Materials used in soldier protective structures, such as armor, vehicles and civil infrastructures, are being improved for performance in extreme dynamic environments. Nanocrystalline metals show significant promise in the design of these structures with superior strengths attributed to the dislocation-based and grain-boundary-based processes as compared to their polycrystalline counterparts. An optimization of these materials, however, requires a fundamental understanding of damage evolution at the atomic level. Accordingly, atomistic molecular dynamics simulations are performed using an embedded-atom method (EAM) potential on three nano-crystalline aluminum atom systems, one a Voronoi-based nano-crystalline system with an average grain size More >

  • Open Access

    ARTICLE

    Simulation of Dendritic Growth with Different Orientation by Using the Point Automata Method

    A.Z. Lorbiecka1, B. Šarler1,2

    CMC-Computers, Materials & Continua, Vol.18, No.1, pp. 69-104, 2010, DOI:10.3970/cmc.2010.018.069

    Abstract The aim of this paper is simulation of thermally induced liquid-solid dendritic growth in two dimensions by a coupled deterministic continuum mechanics heat transfer model and a stochastic localized phase change kinetics model that takes into account the undercooling, curvature, kinetic and thermodynamic anisotropy. The stochastic model receives temperature information from the deterministic model and the deterministic model receives the solid fraction information from the stochastic model. The heat transfer model is solved on a regular grid by the standard explicit Finite Difference Method (FDM). The phase-change kinetics model is solved by the classical Cellular… More >

  • Open Access

    ARTICLE

    Thermo-Elastic Localization Relationships for Multi-Phase Composites

    Giacomo Landi1, Surya R. Kalidindi2

    CMC-Computers, Materials & Continua, Vol.16, No.3, pp. 273-294, 2010, DOI:10.3970/cmc.2010.016.273

    Abstract In this paper, we present a computationally efficient multi-scale framework for predicting the local fields in the representative volume element of a multiphase material system subjected to thermo-mechanical loading conditions. This framework for localization relationships is a natural extension of our recent work on two-phase composites subjected to purely mechanical loading. In this novel approach, the localization relationships take on a simple structure expressed as a series sum, where each term in the series is a convolution product of local structure and the governing physics expressed in the form of influence coefficients. Another salient feature More >

  • Open Access

    ARTICLE

    Computational Homology, Connectedness, and Structure-Property Relations

    Dustin D. Gerrard1, David T. Fullwood1, Denise M. Halverson2, Stephen R. Niezgoda3

    CMC-Computers, Materials & Continua, Vol.15, No.2, pp. 129-152, 2010, DOI:10.3970/cmc.2010.015.129

    Abstract The effective properties of composite materials are often strongly related to the connectivity of the material components. Many structure metrics, and related homogenization theories, do not effectively account for this connectivity. In this paper, relationships between the topology, represented via homology theory, and the effective elastic response of composite plates is investigated. The study is presented in the context of popular structure metrics such as percolation theory and correlation functions. More >

Displaying 91-100 on page 10 of 104. Per Page