Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Simulation of a 4th Order ODE: Illustration of Various Primal & Mixed MLPG Methods

    S. N. Atluri1, Shengping Shen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.3, pp. 241-268, 2005, DOI:10.3970/cmes.2005.007.241

    Abstract Various MLPG methods, with the MLS approximation for the trial function, in the solution of a 4$^{th}$ order ordinary differential equation are illustrated. Both the primal MLPG methods and the mixed MLPG methods are used. All the possible local weak forms for a 4$^{th}$ order ordinary differential equation are presented. In the first kind of mixed MLPG methods, both the displacement and its second derivative are interpolated independently through the MLS interpolation scheme. In the second kind of mixed MLPG methods, the displacement, its first derivative, second derivative and third derivative are interpolated independently through the MLS interpolation scheme. The… More >

  • Open Access

    ARTICLE

    A New Implementation of the Meshless Finite Volume Method, Through the MLPG "Mixed'' Approach

    S. N. Atluri1, Z. D. Han1, A. M. Rajendran2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.6, pp. 491-514, 2004, DOI:10.3970/cmes.2004.006.491

    Abstract The Meshless Finite Volume Method (MFVM) is developed for solving elasto-static problems, through a new Meshless Local Petrov-Galerkin (MLPG) ``Mixed'' approach. In this MLPG mixed approach, both the strains as well as displacements are interpolated, at randomly distributed points in the domain, through local meshless interpolation schemes such as the moving least squares(MLS) or radial basis functions(RBF). The nodal values of strains are expressed in terms of the independently interpolated nodal values of displacements, by simply enforcing the strain-displacement relationships directly by collocation at the nodal points. The MLPG local weak form is then written for the equilibrium equations over… More >

  • Open Access

    ARTICLE

    Computational Methods in Engineering: A Variety of Primal & Mixed Methods, with Global & Local Interpolations, for Well-Posed or Ill-Posed BCs

    L. Dong1, A. Alotaibi2, S.A. Mohiuddine2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.1, pp. 1-85, 2014, DOI:10.3970/cmes.2014.099.001

    Abstract In this expository article, a variety of computational methods, such as Collocation, Finite Volume, Finite Element, Boundary Element, MLPG (Meshless Local Petrov Galerkin), Trefftz methods, and Method of Fundamental Solutions, etc., which are often used in isolated ways in contemporary literature are presented in a unified way, and are illustrated to solve a 4th order ordinary differential equation (beam on an elastic foundation). Both the primal formulation, which considers the 4th order ODE with displacement as the primitive variable, as well as two types of mixed formulations (one resulting in a set of 2 second-order ODEs, and the other resulting… More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations

    Z. D. Han1, A. M. Rajendran2, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.1, pp. 1-12, 2005, DOI:10.3970/cmes.2005.010.001

    Abstract A nonlinear formulation of the Meshless Local Petrov-Galerkin (MLPG) finite-volume mixed method is developed for the large deformation analysis of static and dynamic problems. In the present MLPG large deformation formulation, the velocity gradients are interpolated independently, to avoid the time consuming differentiations of the shape functions at all integration points. The nodal values of velocity gradients are expressed in terms of the independently interpolated nodal values of displacements (or velocities), by enforcing the compatibility conditions directly at the nodal points. For validating the present large deformation MLPG formulation, two example problems are considered: 1) large deformations and rotations of… More >

Displaying 1-10 on page 1 of 4. Per Page