Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Who I am shapes how I learn: A mixed methods study exploring the role of work identity and psychological needs in learning engagement

    Ling Li1,#, Ninghui Xu1,#, Wenjing Wang2,*, Jianfen Ying1,*

    Journal of Psychology in Africa, Vol.35, No.6, pp. 833-842, 2025, DOI:10.32604/jpa.2025.071557 - 30 December 2025

    Abstract This study explores the role of teachers’ professional identity (TPI) on employee learning engagement (LE), with mediation by basic needs satisfaction (BNS). Participants were 255 Chinese pre-service teachers (191 females = 74.9%, 16 freshmen = 6.2%, 135 sophomores = 52.9%, 35 juniors = 12.5%, 72 seniors = 28.2%). They completed surveys on the “QuestionStar” online survey platform and 12 of the teachers completed interviews for sharing their personal insights. The results of Structural Equation Modeling (SEM) indicated that teachers’ professional identity significantly predicted both learning engagement and basic needs satisfaction, with basic needs satisfaction partially More >

  • Open Access

    ARTICLE

    Effects of the 9/11 Terrorist Attacks on Family Narratives and Family Systems

    Cesar E. Montelongo Hernandez1,*, Carol S. North1, E. Whitney Pollio2, David E. Pollio3

    International Journal of Mental Health Promotion, Vol.27, No.6, pp. 737-752, 2025, DOI:10.32604/ijmhp.2025.065317 - 30 June 2025

    Abstract Background: Disaster mental health outcomes of individuals may be affected by the families they inhabit, with effects rippling through the entire family system. Existing research on the experience of children in disasters has typically been limited to examining single individuals or, at most, family dyads. Research is needed to explore interactions within families as a whole, including interactions among multiple family members, as well as with community entities in a broad systems approach with dynamic analysis of family systems over time. The purpose of this study was to combine quantitative and qualitative data using structured… More >

  • Open Access

    ARTICLE

    Computational Methods in Engineering: A Variety of Primal & Mixed Methods, with Global & Local Interpolations, for Well-Posed or Ill-Posed BCs

    L. Dong1, A. Alotaibi2, S.A. Mohiuddine2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.1, pp. 1-85, 2014, DOI:10.3970/cmes.2014.099.001

    Abstract In this expository article, a variety of computational methods, such as Collocation, Finite Volume, Finite Element, Boundary Element, MLPG (Meshless Local Petrov Galerkin), Trefftz methods, and Method of Fundamental Solutions, etc., which are often used in isolated ways in contemporary literature are presented in a unified way, and are illustrated to solve a 4th order ordinary differential equation (beam on an elastic foundation). Both the primal formulation, which considers the 4th order ODE with displacement as the primitive variable, as well as two types of mixed formulations (one resulting in a set of 2 second-order ODEs,… More >

  • Open Access

    ARTICLE

    Simulation of a 4th Order ODE: Illustration of Various Primal & Mixed MLPG Methods

    S. N. Atluri1, Shengping Shen1

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.3, pp. 241-268, 2005, DOI:10.3970/cmes.2005.007.241

    Abstract Various MLPG methods, with the MLS approximation for the trial function, in the solution of a 4$^{th}$ order ordinary differential equation are illustrated. Both the primal MLPG methods and the mixed MLPG methods are used. All the possible local weak forms for a 4$^{th}$ order ordinary differential equation are presented. In the first kind of mixed MLPG methods, both the displacement and its second derivative are interpolated independently through the MLS interpolation scheme. In the second kind of mixed MLPG methods, the displacement, its first derivative, second derivative and third derivative are interpolated independently through… More >

  • Open Access

    ARTICLE

    Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations

    Z. D. Han1, A. M. Rajendran2, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.10, No.1, pp. 1-12, 2005, DOI:10.3970/cmes.2005.010.001

    Abstract A nonlinear formulation of the Meshless Local Petrov-Galerkin (MLPG) finite-volume mixed method is developed for the large deformation analysis of static and dynamic problems. In the present MLPG large deformation formulation, the velocity gradients are interpolated independently, to avoid the time consuming differentiations of the shape functions at all integration points. The nodal values of velocity gradients are expressed in terms of the independently interpolated nodal values of displacements (or velocities), by enforcing the compatibility conditions directly at the nodal points. For validating the present large deformation MLPG formulation, two example problems are considered: 1)… More >

  • Open Access

    ARTICLE

    A New Implementation of the Meshless Finite Volume Method, Through the MLPG "Mixed'' Approach

    S. N. Atluri1, Z. D. Han1, A. M. Rajendran2

    CMES-Computer Modeling in Engineering & Sciences, Vol.6, No.6, pp. 491-514, 2004, DOI:10.3970/cmes.2004.006.491

    Abstract The Meshless Finite Volume Method (MFVM) is developed for solving elasto-static problems, through a new Meshless Local Petrov-Galerkin (MLPG) ``Mixed'' approach. In this MLPG mixed approach, both the strains as well as displacements are interpolated, at randomly distributed points in the domain, through local meshless interpolation schemes such as the moving least squares(MLS) or radial basis functions(RBF). The nodal values of strains are expressed in terms of the independently interpolated nodal values of displacements, by simply enforcing the strain-displacement relationships directly by collocation at the nodal points. The MLPG local weak form is then written… More >

Displaying 1-10 on page 1 of 6. Per Page