Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Coupled Analysis of Independently Modeled Finite Element Substructures by Moving Least Squares Displacement Welding Technique

    Jin Yeon Cho1, Jae Mo An2, You Me Song1, Seungsoo Lee1, Dong Whan Choi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.1, pp. 1-18, 2005, DOI:10.3970/cmes.2005.009.001

    Abstract A displacement welding technique is proposed to carry out coupled analysis of the integrated whole model which consists of independently modeled finite element substructures. In the proposed method, the incompatible displacement fields in the interfaces of independently modeled substructures are directly welded together through a blended function that is newly defined in the transient region of mismatching interface. To construct the blended function, the moving least squares function, which does not require well-defined nodal connectivity, is utilized along with the original finite element shape function. The meshless character of the moving least squares function makes it possible to efficiently handle… More >

  • Open Access

    ARTICLE

    On Chaos Control in Uncertain Nonlinear Systems

    Veturia Chiroiu1, Ligia Munteanu2, Ioan Ursu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.72, No.3, pp. 229-246, 2011, DOI:10.3970/cmes.2011.072.229

    Abstract Chaotic behavior of uncertain nonlinear systems offers a rich variety of orbits, which can be controlled by bounding the signals involved in closed-loop systems. In this paper, systems with nonlinear uncertainties with no prior knowledge of their bounds, unmodeled dynamic law and rapidly varying disturbances are analyzed in order to propose a stabilization controller of the chaotic behavior via the fuzzy logic systems. More >

  • Open Access

    ARTICLE

    Structured Adaptive Control for Poorly Modeled Nonlinear Dynamical Systems

    John L. Junkins1, Kamesh Subbarao2, Ajay Verma3

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.4, pp. 99-118, 2000, DOI:10.3970/cmes.2000.001.551

    Abstract Model reference adaptive control formulations are presented that rigorously impose the dynamical structure of the state space descriptions of several distinct large classes of dynamical systems. Of particular interest, the formulations enable the imposition of exact kinematic differential equation constraints upon the adaptation process that compensates for model errors and disturbances at the acceleration level. Other adaptive control formulations are tailored for redundantly actuated and constrained dynamical systems. The utility of the resulting structured adaptive control formulations is studied by considering examples from nonlinear oscillations, aircraft control, spacecraft control, and cooperative robotic system control. The theoretical and computational results provide… More >

Displaying 11-20 on page 2 of 13. Per Page