Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,391)
  • Open Access

    ARTICLE

    Atomistic Modeling of the Structural and Thermal Conductivity of the InSb

    José Pedro Rino1,Giovano de Oliveira Cardozo1, Adalberto Picinin1

    CMC-Computers, Materials & Continua, Vol.12, No.2, pp. 145-156, 2009, DOI:10.3970/cmc.2009.012.145

    Abstract A new parametrization for the previous empirical interatomic potential for indium antimonite is presented. This alternative parametrization is designed to correct the energetic sequence of structures. The effective empirical interatomic potential proposed consists of two and three body interactions which has the same functional form of the interatomic potential proposed by Vashishta et. al. to study other semiconductors (Branicio et al., 2003; Ebbsjo et al., 2000; Shimojo et al., 2000; Vashishta et al., 2008). Molecular dynamics simulations (MD) are performed to study high pressure phases of InSb up to 70 GPa and its thermal conductivity as a function of temperature.… More >

  • Open Access

    ARTICLE

    Bond-Slip Effects on the Behaviour of RC Beam under Monotonic Loading - An Integrated 3D Computational Model using EAS Approach

    Amiya K. Samanta1, Somnath Ghosh2

    CMC-Computers, Materials & Continua, Vol.12, No.1, pp. 1-38, 2009, DOI:10.3970/cmc.2009.012.001

    Abstract This paper presents a formulation of hypo-elasticity based RC beam model with bond-slip. Details of the constitutive model and analysis method used are provided. A procedure has been described to carry out three-dimensional analysis considering both geometrical as well as material nonlinearity for a simply supported RC beam employing finite element technique, which uses 8-noded isoparametric hexahedral element HCiS18. Enhanced assumed strain (EAS) formulation has been utilized to predict load-deformation and internal stresses both in the elastic as well as nonlinear regime. It models the composite behaviour of concrete and reinforcements in rigid /perfect bond situation and their mutual interaction… More >

  • Open Access

    ARTICLE

    Effect of Process Parameters on Laser Surface Hardening of Plain Carbon Eutectoid Steel

    S. Mukherjee1, S. Chakraborty2, I. Manna1,3

    CMC-Computers, Materials & Continua, Vol.10, No.3, pp. 217-228, 2009, DOI:10.3970/cmc.2009.010.217

    Abstract Influence of power density and interaction time for austenitisation during laser surface hardening of plain carbon eutectoid steel has been investigated. The analysis involves numerical prediction of thermal and solute diffusion profiles and thereby, the time needed for homogenization of austenite for different processing conditions. Experimental results provide qualitative validation. More >

  • Open Access

    ARTICLE

    Multiscale Nonlinear Constitutive Modeling of Carbon Nanostructures Based on Interatomic Potentials

    J. Ghanbari1, R. Naghdabadi1,2

    CMC-Computers, Materials & Continua, Vol.10, No.1, pp. 41-64, 2009, DOI:10.3970/cmc.2009.010.041

    Abstract Continuum-based modeling of nanostructures is an efficient and suitable method to study the behavior of these structures when the deformation can be considered homogeneous. This paper is concerned about multiscale nonlinear tensorial constitutive modeling of carbon nanostructures based on the interatomic potentials. The proposed constitutive model is a tensorial equation relating the second Piola-Kirchhoff stress tensor to Green-Lagrange strain tensor. For carbon nanotubes, some modifications are made on the planar representative volume element (RVE) to account for the curved atomic structure resulting a non-planar RVE. Using the proposed constitutive model, the elastic behavior of the graphene sheet and carbon nanotube… More >

  • Open Access

    ARTICLE

    Multi-Scale Modelling and Simulation of Textile Reinforced Materials

    G. Haasemann1, M. Kästner1 and V. Ulbricht1

    CMC-Computers, Materials & Continua, Vol.3, No.3, pp. 131-146, 2006, DOI:10.3970/cmc.2006.003.131

    Abstract Novel textile reinforced composites provide an extremely high adaptability and allow for the development of materials whose features can be adjusted precisely to certain applications. A successful structural and material design process requires an integrated simulation of the material behavior, the estimation of the effective properties which need to be assigned to the macroscopic model and the resulting features of the component. In this context two efficient modelling strategies - the Binary Model (Carter, Cox, and Fleck (1994)) and the Extended Finite Element Method (X-FEM) (Moës, Cloirec, Cartraud, and Remacle (2003)) - are used to model materials which exhibit a… More >

  • Open Access

    ARTICLE

    Object-Oriented Modeling of Solid Material in Nonlinear Applications

    Hamid Sharifi1 and Augustin Gakwaya1

    CMC-Computers, Materials & Continua, Vol.3, No.2, pp. 77-96, 2006, DOI:10.3970/cmc.2006.003.077

    Abstract In this paper, an object-oriented modeling of solid material constitutive behavior using the UML notation is presented. Material properties are first classified into large and small deformation kinematical models. In the small deformation package, we keep classes such as Elastic, ElastoPlastic, ViscoElastic and ViscoPlastic. In the large deformation package, we store classes such as ElastoPlastic, HyperElastic, HyperPlastic, HyperViscoElastic, HyperViscoPlastic and so on. The hierarchical structure, the association relationships as well as key attributes and methods of these classes are presented. We used a C++ implementation of the above model for developing HyperElastic, HyperElastoPlastic and Contact applications in the Diffpack environment. More >

  • Open Access

    ARTICLE

    Numerical Simulation of Elastic Behaviour and Failure Processes in Heterogeneous Material

    Lingfei Gao1, Xiaoping Zheng1,2, Zhenhan Yao1

    CMC-Computers, Materials & Continua, Vol.3, No.1, pp. 25-36, 2006, DOI:10.3970/cmc.2007.003.025

    Abstract A general numerical approach is developed to model the elastic behaviours and failure processes of heterogeneous materials. The heterogeneous material body is assumed composed of a large number of convex polygon lattices with different phases. These phases are locally isotropic and elastic-brittle with the different lattices displaying variable material parameters and a Weibull-type statistical distribution. When the effective strain exceeds a local fracture criterion, the full lattice exhibits failure uniformly, and this is modelled by assuming a very small Young modulus value. An auto-select loading method is employed to model the failure process. The proposed hybrid approach is applied to… More >

  • Open Access

    ARTICLE

    Numerical Modelling of Damage Response of Layered Composite Plates

    I. Smojver1, J. Sorić2

    CMC-Computers, Materials & Continua, Vol.3, No.1, pp. 13-24, 2006, DOI:10.3970/cmc.2007.003.013

    Abstract The paper addresses the problem of impact on layered fibre composites. The behaviour of composite laminates under impact loading is dependent not only on the velocity but also on the mass and geometry of the impactor. Using micromechanical Mori-Tanaka approach, mechanical properties of the laminate have been calculated utilizing the material constants of the fibre and matrix. General purpose FEM software ABAQUS has been modified by means of user written subroutines for modelling of composite laminate and rigid impactor. The kinematics of the impact has been simulated using transient dynamic analysis. Employing user defined multi point constraints, delamination zones have… More >

  • Open Access

    ARTICLE

    Two-dimensional Corrosion Pit Initiation and Growth Simulation Model

    Ramana M. Pidaparti1, Anuj Puri2, Mathew J. Palakal2, Ajay Kashyap3

    CMC-Computers, Materials & Continua, Vol.2, No.1, pp. 65-76, 2005, DOI:10.3970/cmc.2005.002.065

    Abstract A two-dimensional corrosion initiation and growth model for aircraft aluminum materials is developed. The model takes into account the electro-chemical parameters as well as specific rules governing corrosion mechanisms. The simulation program is implemented in a cellular automata framework. The corrosion initiation and growth patterns obtained from simulations are compared qualitatively and quantitatively to the experimental data obtained from the Center for Materials Diagnostics at the University of Dayton Research Institute, Dayton. The results indicate that the present model effectively captures the corrosion damage process including initiation and growth. The effects of various electro-chemical parameters on the damage growth obtained… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Parameters in a Laminated Beam Model by Radial Basis Functions

    Y. C. Hon1, L. Ling2, K. M. Liew3

    CMC-Computers, Materials & Continua, Vol.2, No.1, pp. 39-50, 2005, DOI:10.3970/cmc.2005.002.039

    Abstract In this paper we investigate a thermal driven Micro-Electrical-Mechanical system which was originally designed for inkjet printer to precisely deliver small ink droplets onto paper. In the model, a tiny free-ended beam of metal bends and projects ink onto paper. The model is solved by using the recently developed radial basis functions method. We establish the accuracy of the proposed approach by comparing the numerical results with reported experimental data. Numerical simulations indicate that a light (low composite mass) beam is more stable as it does not oscillate much. A soft (low rigidity) beam results in a higher rate of… More >

Displaying 3381-3390 on page 339 of 3391. Per Page