Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (723)
  • Open Access

    ARTICLE

    Topological Approach for Analyzing and Modeling the Aerodynamic Hysteresis of an Airfoil

    Tao Cui1, Wenhao Liao1 and Daren Yu 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.45, No.3, pp. 273-294, 2009, DOI:10.3970/cmes.2009.045.273

    Abstract Aerodynamic hysteresis is of practical importance for the flying airfoils. Motivated by the problem of global description on the hysteresis behaviors, this paper proposes a topological approach to analyze and model the hysteresis behaviors exhibited in the airfoil flow from a viewpoint of dynamic system theory. The approach is based on the topological invariant rules of singular points under topological mapping. It is able to theoretically explain such discontinuous hysteresis phenomena, and make consistent and accurate predictions of the hysteresis behaviors in the airfoil flow. The model results have shown that the present model is in good agreement with the… More >

  • Open Access

    ARTICLE

    A Computational Approach for Pre-Shaping Voltage Commands of Torsional Micromirrors

    T. Starling1, M. F. Daqaq1, G. Li1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.45, No.3, pp. 207-226, 2009, DOI:10.3970/cmes.2009.045.207

    Abstract Input-shaping is an open-loop control technique for dynamic control of electrostatic MEMS. In MEMS applications, open-loop control is attractive as it computes a priori the required system input to achieve desired dynamic behavior without using feedback. In this work, a 3-D computational electromechanical analysis is performed to preshape the voltage commands applied to electrostatically actuate a torsional micromirror to a desired tilt angle with minimal residual oscillations. The effect of higher vibration modes on the controlled response is also investigated. It is shown that, for some structural design parameters, the first bending mode of the micromirror can have a significant… More >

  • Open Access

    ARTICLE

    A Dynamical Modeling to Study the Adaptive Immune System and the Influence of Antibodiesin the Immune Memory

    Alexandre de Castro1,2, Carlos Frederico Fronza2, Domingos Alves2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.45, No.1, pp. 83-96, 2009, DOI:10.3970/cmes.2009.045.083

    Abstract Immunological systems have been an abundant inspiration to contemporary computer scientists. Problem solving strategies, stemming from known immune system phenomena, have been successfully applied to chall enging problems of modern computing. Simulation systems and mathematical modeling are also beginning use to answer more complex immunological questions as immune memory process and duration of vaccines, where the regulation mechanisms are not still known sufficiently (Lundegaard, Lund, Kesmir, Brunak, Nielsen, 2007). In this article we studiedin machinaa approach to simulate the process of antigenic mutation and its implications for the process of memory. Our results have suggested that the durability of the… More >

  • Open Access

    ARTICLE

    A Discontinuous Galerkin Meshfree Modeling of Material Interface

    Dongdong Wang1,2, Yue Sun2, Ling Li2

    CMES-Computer Modeling in Engineering & Sciences, Vol.45, No.1, pp. 57-82, 2009, DOI:10.3970/cmes.2009.045.057

    Abstract A discontinuous Galerkin meshfree formulation is proposed to solve the potential and elasticity problems of composite material where the material interface has to be appropriately modeled. In the present approach the problem domain is partitioned into patches or sub-domains and each patch holds the same material properties. The discretized meshfree particles within a patch are classified as one particle group. Various patches occupied by different particle groups are then linked using the discontinuous Galerkin formulation where an averaged interface flux or traction is constructed based on the fluxes or tractions computed from the adjacent patches. The gradient jump condition across… More >

  • Open Access

    ARTICLE

    Matching Contours in Images through the use of Curvature, Distance to Centroid and Global Optimization with Order-Preserving Constraint

    Francisco P. M. Oliveira1, João Manuel R. S. Tavares1

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.1, pp. 91-110, 2009, DOI:10.3970/cmes.2009.043.091

    Abstract This paper presents a new methodology to establish the best global match of objects' contours in images. The first step is the extraction of the sets of ordered points that define the objects' contours. Then, by using the curvature value and its distance to the corresponded centroid for each point, an affinity matrix is built. This matrix contains information of the cost for all possible matches between the two sets of ordered points. Then, to determine the desired one-to-one global matching, an assignment algorithm based on dynamic programming is used. This algorithm establishes the global matching of the minimum global… More >

  • Open Access

    ARTICLE

    Numerical Modeling of Short-Pulse Laser Interactions with Multi-Layered Thin Metal Films

    E. Majchrzak1, B. Mochnacki2, A. L. Greer3, J. S. Suchy4

    CMES-Computer Modeling in Engineering & Sciences, Vol.41, No.2, pp. 131-146, 2009, DOI:10.3970/cmes.2009.041.131

    Abstract Multi-layered thin metal film subjected to a short-pulse laser heating is considered. Mathematical description of the process discussed bases on the equation in which there appear the relaxation time and the thermalization time (dual-phase-lag-model). In this study we develop a three level implicit finite difference scheme for numerical modelling of heat transfer in non-homogeneous metal film. At the interfaces an ideal contact between successive layers is assumed. At the stage of computations a solution of only one three-diagonal linear system corresponds to transition from time t to t + Δt. The mathematical model, numerical algorithm and examples of computations are… More >

  • Open Access

    ARTICLE

    Micromechanical analysis of aligned and randomly oriented whisker-/ short fiber-reinforced composites

    S.H. Pyo1, H.K. Lee1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.40, No.3, pp. 271-306, 2009, DOI:10.3970/cmes.2009.040.271

    Abstract This paper presents a micromechanical approach for predicting the elastic and multi-level damage response of aligned and randomly oriented whisker-/ short fiber-reinforced composites. Based on a combination of Eshelby's micromechanics and the evolutionary imperfect interface approach, the effective elastic moduli of the composites are derived explicitly. The modified Eshelby's tensor for spheroidal inclusions with slightly weakened interface [Qu (1993b)] is extended in the present study to model whiskers or short fibers having mild or severe imperfect interfaces. Aligned and random orientations of spheroidal reinforcements are considered. A multi-level damage model in accordance with the Weibull's probabilistic function is then incorporated… More >

  • Open Access

    ARTICLE

    A New Mathematical Modeling of Maxwell Equations: Complex Linear Operator and Complex Field

    Chein-Shan Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.38, No.1, pp. 25-38, 2008, DOI:10.3970/cmes.2008.038.025

    Abstract In this paper a complex matrix operator and a complex field are used to express the Maxwell equations, of which the complex field embraces all field variables and the matrix operator embraces the time and space differential operators. By left applying the operator on the complex field one can get all the four Maxwell equations, which are usually expressed by the vector form. The new formulation matches the Lorenz gauge condition, and its mathematical advantage is that it can incorporate the Maxwell equations into a single equation. The introduction of four-potential is possible only under the Lorenz gauge. In terms… More >

  • Open Access

    ARTICLE

    Modeling of Structural Sandwich Plates with `Through-the-Thickness' Inserts: Five-Layer Theory

    Song-Jeng Huang1,2, Lin-Wei Chiu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.34, No.1, pp. 1-32, 2008, DOI:10.3970/cmes.2008.034.001

    Abstract The composite sandwich plate is one of the most common composite structures. Local stress concentrations can be caused by localized bending effects where a load is introduced. Although a sandwich structure with an insert is one of the classical load bearing structures, little work has been conducted on the adhesive layers or inserts. This study involves a linear elasticity analysis of five-layer sandwich plates with ``through-the-thickness'' inserts, using sandwich plate theory to analyze deformation behavior. Governing equations are formulated as partial differential equations, which are solved numerically using the multi-segment integration method. Sandwich plates with ``through-the-thickness'' inserts subjected to axisymmetric… More >

  • Open Access

    ARTICLE

    Optimization of Industrial Fluid Catalytic Cracking Unit having Five Lump Kinetic Scheme using Genetic Algorithm

    Shishir Sinha1, Praveen Ch.

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.2, pp. 85-102, 2008, DOI:10.3970/cmes.2008.032.085

    Abstract Fluid catalytic cracking (FCC) unit plays most important role in the economy of a modern refinery that it is use for value addition to the refinery products. Because of the importance of FCC unit in refining, considerable effort has been done on the modeling of this unit for better understanding and improved productivity. The process is characterized by complex interactions among feed quality, catalyst properties, unit hardware parameters and process conditions. \newline The traditional and global approach of cracking kinetics is lumping. In the present paper, five lump kinetic scheme is considered, where gas oil crack to give lighter fractions… More >

Displaying 621-630 on page 63 of 723. Per Page