Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access


    A Novel Modified Alpha Power Transformed Weibull Distribution and Its Engineering Applications

    Refah Alotaibi1, Hassan Okasha2,3, Mazen Nassar2,4, Ahmed Elshahhat5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2065-2089, 2023, DOI:10.32604/cmes.2023.023408

    Abstract This paper suggests a new modified version of the traditional Weibull distribution by adding a new shape parameter utilising the modified alpha power transformed technique. We refer to the new model as modified alpha power transformed Weibull distribution. The attractiveness and significance of the new distribution lie in its power to model monotone and non-monotone failure rate functions, which are quite familiar in environmental investigations. Its hazard rate function can be decreasing, increasing, bathtub and upside-down then bathtub shaped. Diverse structural properties of the proposed model are acquired including quantile function, moments, entropies, order statistics, More >

  • Open Access


    A New Three-Parameter Inverse Weibull Distribution with Medical and Engineering Applications

    Refah Alotaibi1, Hassan Okasha2,3, Hoda Rezk4, Mazen Nassar2,5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1255-1274, 2023, DOI:10.32604/cmes.2022.022623

    Abstract The objective of this article is to provide a novel extension of the conventional inverse Weibull distribution that adds an extra shape parameter to increase its flexibility. This addition is beneficial in a variety of fields, including reliability, economics, engineering, biomedical science, biological research, environmental studies, and finance. For modeling real data, several expanded classes of distributions have been established. The modified alpha power transformed approach is used to implement the new model. The data matches the new inverse Weibull distribution better than the inverse Weibull distribution and several other competing models. It appears to More >

Displaying 1-10 on page 1 of 2. Per Page