Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Investigation on Thermal Insulation and Mechanical Strength of Lightweight Aggregate Concrete and Porous Mortar in Cold Regions

    Jianan Wu1, Ke Xue2, Zhaowei Ding3, Lei Lang3, Kang Gu3, Xiaolin Li4, Mingli Zhang5, Desheng Li3,6,*

    Journal of Renewable Materials, Vol.10, No.12, pp. 3167-3183, 2022, DOI:10.32604/jrm.2022.020265

    Abstract Thermal insulation is an important indicator to evaluate the construction material in cold region engineering. As we know, adding the industrial waste as lightweight aggregate or creating the pore inside the cement-based composite could make the texture loose, and the thermal insulating capacity of the material would be improved with this texture. Using these methods, the industrial by-product and engineering waste could be cycled in an efficient way. Moreover, after service the fragmented cement composites paste could be used as aggregate in the thermal insulating concrete again. While the porous texture is not favorable for the mechanical strength and long-term… More > Graphic Abstract

    Investigation on Thermal Insulation and Mechanical Strength of Lightweight Aggregate Concrete and Porous Mortar in Cold Regions

  • Open Access

    ARTICLE

    Environmental and Durability Perspective of the Use of Curaua Fiber Treated in Mortars

    Afonso R. G. de Azevedo1,*, Marcelo Nascimento2, Dirlane do Carmo3, Markssuel T. Marvila4, Gustavo de C. Xavier1, Sergio Neves Monteiro4

    Journal of Renewable Materials, Vol.10, No.9, pp. 2409-2429, 2022, DOI:10.32604/jrm.2022.020503

    Abstract The use of natural lignocellulosic fibers (NLFs) as a reinforcement mechanism for cementitious composites, such as mortar, has been investigated in the last decades. However, their application has often been restricted to technological evaluation research. A NLF with great potential the curaua, which after treatment with NaOH solution, proved to be technologically feasible for mortars reinforcement based on cement and lime. The objective of this research was the comparative evaluation between a traditional mortar, based on cement and lime, with 1:1:6:0.8 ratio of cement: lime: sand: water, and a modified mortar with addition of 2 wt.% treated curaua fiber in… More >

  • Open Access

    ARTICLE

    Study on Performance Regulation and Mechanism of Quicklime and Biopolymer on Hemihydrate Phosphogypsum

    Zaibo Zhou1, Juanhong Liu1,2,3,*, Kun Luo1, Aixiang Wu1,3, Hongjiang Wang1,3

    Journal of Renewable Materials, Vol.10, No.2, pp. 373-384, 2022, DOI:10.32604/jrm.2022.016380

    Abstract In order to reduce the influence of impurities in hemihydrate phosphogypsum(HPG) on the environment and improve the workability of HPG, the effects of the content of quicklime and types of biopolymer (hydroxypropyl methylcellulose, xanthan gum, sodium polyacrylate(PAANa)) on the compressive strength, softening coefficient and ultrasonic velocity of HPG were evaluated. When the content of quicklime was 1.5% and the content of PAANa was 0.2%, HPG had the best mechanical properties and workability, its water retention rate can be increased by 5.8%, and unconfined compressive strength of 3 days increased by 10.3% and 7 days increased by 13.1%. Through the analysis… More > Graphic Abstract

    Study on Performance Regulation and Mechanism of Quicklime and Biopolymer on Hemihydrate Phosphogypsum

  • Open Access

    ARTICLE

    Characterization of Manmade and Recycled Cellulosic Fibers for Their Application in Building Materials

    Nadezda Stevulova1,*, Viola Hospodarova1, Adriana Estokova1, Eva Singovszka1, Marian Holub1, Stefan Demcak1, Jaroslav Briancin2, Anton Geffert3, Frantisek Kacik3, Vojtech Vaclavik4, Tomas Dvorsky4

    Journal of Renewable Materials, Vol.7, No.11, pp. 1121-1145, 2019, DOI:10.32604/jrm.2019.07556

    Abstract The aim of this study was to characterize two types of cellulosic fibers obtained from bleached wood pulp and unbleached recycled waste paper with different cellulose content (from 47.4 percent up to 82 percent), to compare and to analyze the potential use of the recycled fibers for building application, such as plastering mortar. Changes in the chemical composition, cellulose crystallinity and degree of polymerization of the fibers were found. The recycled fibers of lower quality showed heterogeneity in the fiber sizes (width and length), and they had greater surface roughness in comparison to high purity wood pulp samples. The high… More >

  • Open Access

    ABSTRACT

    Microscopic Model Containing Micro-Voids for Analysis of Cement Mortar Damage Fracture Process

    Jichang Wang, Xiaoming Guo*, Xiaoxiao Sun

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 79-79, 2019, DOI:10.32604/icces.2019.05248

    Abstract Cement mortar is an important component of many composite materials and one of the most widely used materials in engineering construction. At microscopic level, cement mortar can be regarded as a multiphase material composed of fine aggregates, cement paste, and a great many of initial defects, the form of which are micro-cracks and micro-voids. The macroscopic properties of cement mortar will be influenced by mechanical properties of different constituents and complex internal structures. The microscopic model containing micro-voids is established by the method of secondary development. The process of cement mortar damage fracture is studied. The fracture toughness of fine… More >

  • Open Access

    ARTICLE

    Stabilization and Evaluation of Modified Nanofiber Flour Wood on the Properties of Cement-Baszd Mortar

    Fadhel Aloulou1,*, Sabrine Alila2, Habib Sammouda1

    Journal of Renewable Materials, Vol.7, No.8, pp. 763-774, 2019, DOI:10.32604/jrm.2019.04071

    Abstract The influence of nanofiberwood on the properties of the fresh condition of cement based mortars is not known in detail, despite recent advances in nanocellulose technology and it is related composite materials. Nanofiber wood from industrial waste, produced by high-pressure homogenization, was used as cement partial replacement for cement paste at a content ranging from 0% to 2% by weight of cement. The effect of the nanofiber wood content on the porosity, the compressive strength and the degree of hydration of the cement was investigated. Results have shown an improvement in the compressive strength by more than 50% with 1%… More >

  • Open Access

    ARTICLE

    Influence and Dispersion of Nanofiber of Wood Modified on Properties of Cement Based Mortars

    Fadhel Aloulou1,*, Alila Sabrine2, Habib Sammouda1

    Journal of Renewable Materials, Vol.7, No.7, pp. 631-641, 2019, DOI:10.32604/jrm.2019.04070

    Abstract Wood nanofibers from industrial waste have been used as polymeric material to reinforce the cement paste to a content of up to 2% by weight of cement. The effect of the wood nanofibre content on the porosity, the compressive strength and the degree of hydration of the cement was studied. The results showed an improvement in compressive strength of over 50% with 1% of added fiberwood. Chemical modification of nanofiber wood by grafting alkyl chains to their surface can reduce the amount of water absorbed by the sample. Addition of an anionic additive (SDBS) to the mixing water improves the… More >

  • Open Access

    ARTICLE

    Characterization and Influence of Nanofiber Flours of Wood Modified on Fresh State Properties of Cement Based Mortars

    Fadhel Aloulou1,*, Sabrine Alila2

    Journal of Renewable Materials, Vol.7, No.6, pp. 557-566, 2019, DOI:10.32604/jrm.2019.00141

    Abstract Nanofibrillated wood fiber was used as fillers in the partial cement matrix replacing the cement to a content of up to 2% by weight of cement. The nanofibrillated effect of wood fibers on porosity, thermal properties and compressive strength was studied. The results obtained showed an improvement in compressive strength of more than 40% with 1% by weight of wood fiber nanofibrillate. The addition of nanofibrillated wood fiber shows a good pore reduction, and the best result was obtained with emulsion of a mixture incorporating 1% by weight of wood fiber nanofibrillate in the presence of an anionic surfactant (SDBS).… More >

  • Open Access

    ARTICLE

    Influence of Water Stability on Bond Performance Between Magnesium Phosphate Cement Mortar and Steel Fibre

    Hu Feng1, Guanghui Liu1, Jiansong Yuan2,*, M. Neaz Sheikh3, Lu Feng4, Jun Zhao1

    Structural Durability & Health Monitoring, Vol.13, No.1, pp. 105-121, 2019, DOI:10.32604/sdhm.2019.04864

    Abstract The fibre pullout test was conducted to investigate the influence of the water stability on the bond behaviour between the Magnesium phosphate cement (MPC) matrix and the steel fibre. The composition of the MPC-matrix and the immersion age of the specimens are experimentally investigated. The average bond strength and the pullout energy are investigated by analysing the experimental results. In addition, the microscopic characteristics of the interface transition zone are investigated using scanning electron microscopy (SEM). The experimental results showed that the bond performance between the MPC-matrix and the steel fibre decreased significantly with the increase of the duration of… More >

  • Open Access

    ARTICLE

    Estimating the Properties of Ground-Waste-Brick Mortars Using DNN and ANN

    Abdulkadir Karaci1,*, Hasbi Yaprak2, Osman Ozkaraca3, Ilhami Demir4, Osman Simsek5

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.1, pp. 207-228, 2019, DOI:10.31614/cmes.2019.04216

    Abstract In this study, deep-neural-network (DNN)- and artificial-neural-network (ANN)-based models along with regression models have been developed to estimate the pressure, bending and elongation values of ground-brick (GB)-added mortar samples. This study is aimed at utilizing GB as a mineral additive in concrete in the ratios 0.0%, 2.5%, 5.0%, 7.5%, 10.0%, 12.5% and 15.0%. In this study, 756 mortar samples were produced for 84 different series and were cured in tap water (W), 5% sodium sulphate solution (SS5) and 5% ammonium nitrate solution (AN5) for 7 days, 28 days, 90 days and 180 days. The developed DNN models have three inputs… More >

Displaying 11-20 on page 2 of 22. Per Page