Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    PROCEEDINGS

    Kinetic Photovoltage from Moving Boundaries of Electrical Double Layer

    Jun Yin1,*, Jidong Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09679

    Abstract External photo-stimuli on heterojunctions commonly induce an electric potential gradient across the interface therein, such as photovoltaic effect, giving rise to various present-day technical devices. In contrast, in-plane potential gradient along the interface has been rarely observed. Here we show that moving a light beam at the semiconductor-water interface, i.e. creating a moving boundary of electrical double layers between the illuminated and dark regions, induce a potential gradient along the semiconductor. It is attributed to the following movement of a charge packet in the vicinity of the silicon surface, whose formation is driven by a built-in electrical field associated with… More >

  • Open Access

    ARTICLE

    A Peridynamic Approach for the Evaluation of Metal Ablation under High Temperature

    Hui Li*, Liping Zhang, Yixiong Zhang, Xiaolong Fu, Xuejiao Shao, Juan Du

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1997-2019, 2023, DOI:10.32604/cmes.2022.020792

    Abstract In this paper, the evaluations of metal ablation processes under high temperature, i.e., the Al plate ablated by a laser and a heat carrier and the reactor pressure vessel ablated by a core melt, are studied by a novel peridynamic method. Above all, the peridynamic formulation for the heat conduction problem is obtained by Taylor’s expansion technique. Then, a simple and efficient moving boundary model in the peridynamic framework is proposed to handle the variable geometries, in which the ablated states of material points are described by an additional scalar field. Next, due to the automatic non-interpenetration properties of peridynamic… More > Graphic Abstract

    A Peridynamic Approach for the Evaluation of Metal Ablation under High Temperature

  • Open Access

    ARTICLE

    Predicting Wave Run-Up using Full ALE Finite Element Approach considering Moving Boundary

    Shahin Zohouri1, Moharram D. Pirooz2, Asad Esmaeily3

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.1, pp. 107-118, 2005, DOI:10.3970/cmes.2005.007.107

    Abstract A numerical scheme is developed to predict the wave run-up of an unsteady, incompressible viscous flow with free surface by the author$^1$. The method involves a two dimensional finite element with moving boundaries. The governing equations were the Navier-Stokes equations for conservation of momentum and mass for Newtonian fluids, continuity equation, and full nonlinear kinematic free-surface equation. A mapping algorithm was developed to solve highly deformed free surface problems, common in wave propagation. This algorithm transforms the run up model from the physical domain to a computational domain. A new Arbitrary Lagrangian-Eulerian (ALE) finite element modeling technique was used to… More >

  • Open Access

    ARTICLE

    An Improved WCSPH Method to Simulate the Non-Newtonian Power Law Fluid Flow Induced by Motion of a Square Cylinder

    R. Shamsoddini, N. Aminizadeh1, M. Sefid

    CMES-Computer Modeling in Engineering & Sciences, Vol.105, No.3, pp. 209-230, 2015, DOI:10.3970/cmes.2015.105.209

    Abstract In this study, an improved weakly compressible Smoothed Particle Hydrodynamics method is introduced and applied for investigation of the non- Newtonian power-law fluid flow which is induced by motion of a square cylinder. The method is based on a predictor-corrector scheme and pressure velocity coupling to overcome the non-physical fluctuations of WCSPH. The numerical method is also supported by the corrective tensors and shifting algorithm. The results are validated against the well known test cases and benchmark data. The square motion is tested in various Reynolds numbers for various power law indices. The results show that the drag coefficient increases… More >

  • Open Access

    ARTICLE

    Simulation of Free Surface Flow with a Revolving Moving Boundary for Screw Extrusion Using Smoothed Particle Hydrodynamics

    T.W. Dong1, H.S. Liu1, S.L. Jiang2, L.Gu1, Q.W. Xiao1, Z. Yu1, X.F. Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.95, No.5, pp. 369-390, 2013, DOI:10.3970/cmes.2013.095.369

    Abstract In this paper, we present a free surface flow model with a forced revolving moving boundary for partially filled screw extrusion. The incompressible smoothed particle hydrodynamics (ISPH) is used to simulate this complex flow. A set of organic glass experimental device for this partially filled fluid is manufactured. SPH results are satisfactorily compared with experiment results. The computed free surfaces are in good agreement with the free surfaces obtained from the experiment. Further analysis shows that with the increase of the speed, the average velocity of fluid increases, the effect of centrifugal force begin to show up, the maximum pressure… More >

  • Open Access

    ARTICLE

    A Numerical Procedure Based on 1D-IRBFN and Local MLS-1D-IRBFN Methods for Fluid-Structure Interaction Analysis

    D. Ngo-Cong, N. Mai-Duy, W. Karunasena, T. Tran-Cong

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.5, pp. 459-498, 2012, DOI:10.3970/cmes.2012.083.459

    Abstract The partition of unity method is employed to incorporate the moving least square (MLS) and one dimensional-integrated radial basis function (1D-IRBFN) techniques in a new approach, namely local MLS-1D-IRBFN or LMLS-1D-IRBFN. This approach leads to sparse system matrices and offers a high level of accuracy as in the case of 1D-IRBFN method. A new numerical procedure based on the 1D-IRBFN method and LMLS-1D-IRBFN approach is presented for a solution of fluid-structure interaction (FSI) problems. A combination of Chorin's method and pseudo-time subiterative technique is presented for a transient solution of 2-D incompressible viscous Navier-Stokes equations in terms of primitive variables.… More >

Displaying 1-10 on page 1 of 6. Per Page