Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Probabilistic-Ellipsoid Hybrid Reliability Multi-Material Topology Optimization Method Based on Stress Constraint

    Zibin Mao1, Qinghai Zhao1,2,*, Liang Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 757-792, 2024, DOI:10.32604/cmes.2024.048016

    Abstract This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design. The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads. The topology optimization formula is combined with the ordered solid isotropic material with penalization (ordered-SIMP) multi-material interpolation model. The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function. Furthermore, the sequential optimization and reliability assessment (SORA) is applied to… More >

  • Open Access

    ARTICLE

    Multi-Material and Multiscale Topology Design Optimization of Thermoelastic Lattice Structures

    Jun Yan1,2, Qianqian Sui1, Zhirui Fan1, Zunyi Duan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 967-986, 2022, DOI:10.32604/cmes.2022.017708

    Abstract This study establishes a multiscale and multi-material topology optimization model for thermoelastic lattice structures (TLSs) considering mechanical and thermal loading based on the Extended Multiscale Finite Element Method (EMsFEM). The corresponding multi-material and multiscale mathematical formulation have been established with minimizing strain energy and structural mass as the objective function and constraint, respectively. The Solid Isotropic Material with Penalization (SIMP) interpolation scheme has been adopted to realize micro-scale multi-material selection of truss microstructure. The modified volume preserving Heaviside function (VPHF) is utilized to obtain a clear 0/1 material of truss microstructure. Compared with the classic topology optimization of single-material TLSs,… More >

Displaying 1-10 on page 1 of 2. Per Page