Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    A Review of the Evolution of Multi-Objective Evolutionary Algorithms

    Thomas Hanne1,*, Mohammad Jahani Moghaddam2

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4203-4236, 2025, DOI:10.32604/cmc.2025.068087 - 23 October 2025

    Abstract Multi-Objective Evolutionary Algorithms (MOEAs) have significantly advanced the domain of Multi-Objective Optimization (MOO), facilitating solutions for complex problems with multiple conflicting objectives. This review explores the historical development of MOEAs, beginning with foundational concepts in multi-objective optimization, basic types of MOEAs, and the evolution of Pareto-based selection and niching methods. Further advancements, including decom-position-based approaches and hybrid algorithms, are discussed. Applications are analyzed in established domains such as engineering and economics, as well as in emerging fields like advanced analytics and machine learning. The significance of MOEAs in addressing real-world problems is emphasized, highlighting their More >

  • Open Access

    ARTICLE

    DeepSurNet-NSGA II: Deep Surrogate Model-Assisted Multi-Objective Evolutionary Algorithm for Enhancing Leg Linkage in Walking Robots

    Sayat Ibrayev1, Batyrkhan Omarov1,2,3,*, Arman Ibrayeva1, Zeinel Momynkulov1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 229-249, 2024, DOI:10.32604/cmc.2024.053075 - 15 October 2024

    Abstract This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II (Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II) for solving complex multi-objective optimization problems, with a particular focus on robotic leg-linkage design. The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II, aiming to enhance the efficiency and precision of the optimization process. Through a series of empirical experiments and algorithmic analyses, the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from… More >

  • Open Access

    ARTICLE

    Vision-Aided Path Planning Using Low-Cost Gene Encoding for a Mobile Robot

    Wei-Cheng Wang, Chow-Yong Ng, Rongshun Chen*

    Intelligent Automation & Soft Computing, Vol.32, No.2, pp. 991-1006, 2022, DOI:10.32604/iasc.2022.022067 - 17 November 2021

    Abstract Path planning is intrinsically regarded as a multi-objective optimization problem (MOOP) that simultaneously optimizes the shortest path and the least collision-free distance to obstacles. This work develops a novel optimized approach using the genetic algorithm (GA) to drive the multi-objective evolutionary algorithm (MOEA) for the path planning of a mobile robot in a given finite environment. To represent the positions of a mobile robot as integer-type genes in a chromosome of the GA, a grid-based method is also introduced to relax the complex environment to a simple grid-based map. The system architecture is composed of More >

Displaying 1-10 on page 1 of 3. Per Page