Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Simulation of Dynamic Failure Evolution in Brittle Solids without Using Nonlocal Terms in the Strain-Stress Space

    Z. Chen1, W. Hu1, E.P. Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.4, pp. 57-62, 2000, DOI:10.3970/cmes.2000.001.509

    Abstract To simulate the dynamic failure evolution without using nonlocal terms in the strain-stress space, a damage diffusion equation is formulated with the use of a combined damage/plasticity model that was primarily applied to the case of rock fragmentation. A vectorized model solver is developed for large-scale simulation. Two-dimensional sample problems are considered to illustrate the features of the proposed solution procedure. It appears that the proposed approach is effective in simulating the evolution of localization, with parallel computing, in a single computational domain involving different lower-order governing differential equations. More >

  • Open Access

    ARTICLE

    Peridynamic Simulation of Electromigration

    Walter Gerstle1, Stewart Silling2, David Read3, Vinod Tewary4, Richard Lehoucq5

    CMC-Computers, Materials & Continua, Vol.8, No.2, pp. 75-92, 2008, DOI:10.3970/cmc.2008.008.075

    Abstract A theoretical framework, based upon the peridynamic model, is presented for analytical and computational simulation of electromigration. The framework allows four coupled physical processes to be modeled simultaneously: mechanical deformation, heat transfer, electrical potential distribution, and vacancy diffusion. The dynamics of void and crack formation, and hillock and whisker growth can potentially be modeled. The framework can potentially be applied at several modeling scales: atomistic, crystallite, multiple crystallite, and macro. The conceptual simplicity of the model promises to permit many phenomena observed in microchips, including electromigration, thermo-mechanical crack formation, and fatigue crack formation, to be analyzed in a systematic and… More >

Displaying 11-20 on page 2 of 12. Per Page