Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Reduced Order Machine Learning Finite Element Methods: Concept, Implementation, and Future Applications

    Ye Lu1, Hengyang Li1, Sourav Saha2, Satyajit Mojumder2, Abdullah Al Amin1, Derick Suarez1, Yingjian Liu3, Dong Qian3, Wing Kam Liu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.3, pp. 1351-1371, 2021, DOI:10.32604/cmes.2021.017719

    Abstract This paper presents the concept of reduced order machine learning finite element (FE) method. In particular, we propose an example of such method, the proper generalized decomposition (PGD) reduced hierarchical deeplearning neural networks (HiDeNN), called HiDeNN-PGD. We described first the HiDeNN interface seamlessly with the current commercial and open source FE codes. The proposed reduced order method can reduce significantly the degrees of freedom for machine learning and physics based modeling and is able to deal with high dimensional problems. This method is found more accurate than conventional finite element methods with a small portion of degrees of freedom. Different… More >

  • Open Access

    ABSTRACT

    Mechanics of complex surfaces by multi-scale modeling

    Yan Wang1, Weina Li1, Jorg Weissmoller2,3, Huiling Duan1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.4, pp. 117-118, 2011, DOI:10.3970/icces.2011.018.117

    Abstract Surface stress plays a very important role in surface morphology evolution [1-3]. Since the bonding configurations of the atoms at surfaces become different when adsorbates are situated on the surfaces, surface stress can be altered by the presence of adsorbates. Moreover, unless experiments are carried out on high quality single crystals, the surface will typically exhibit corrugation or roughness even when it is nominally planar. We have analyzed this kind of problem and pointed out that stress can be quite significantly affected by surface roughness when the microstructure scale reaches the nanometer range [4].

    Therefore, we first build a… More >

  • Open Access

    ARTICLE

    Multiscale Crystal Plasticity Modeling based on Field Theory

    T. Hasebe1

    CMES-Computer Modeling in Engineering & Sciences, Vol.11, No.3, pp. 145-156, 2006, DOI:10.3970/cmes.2006.011.145

    Abstract This paper presents recent achievements in field theoretical approach toward substantial linkage among key hieratical scales dominating polycrystalline plasticity of metals and alloys. Major ingredients of the theory are briefly shown first, which is followed by several overwhelming results and some implications including key factors for dislocation cell structure evolution, key features of polycrystalline plasticity and their rational modeling in crystal plasticity-based constitutive equation. More >

Displaying 1-10 on page 1 of 3. Per Page